[1]王静,孔令茵,雷炳业,等.抑郁症的脑复杂网络研究进展[J].中国医学物理学杂志,2020,37(6):780-785.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.023]
 WANG Jing,KONG Lingyin,LEI Bingye,et al.Advances in research on complex brain networks in depression[J].Chinese Journal of Medical Physics,2020,37(6):780-785.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.023]
点击复制

抑郁症的脑复杂网络研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第6期
页码:
780-785
栏目:
脑科学与神经物理
出版日期:
2020-06-25

文章信息/Info

Title:
Advances in research on complex brain networks in depression
文章编号:
1005-202X(2020)06-0780-06
作者:
王静1孔令茵2雷炳业2吴凯23456
1.中山大学新华学院生物医学工程学院, 广东 广州 510520; 2.华南理工大学材料科学与工程学院生物医学工程系, 广东 广州 510006; 3.广东省精神疾病转化医学工程技术研究中心, 广东 广州 510370; 4.广州市惠爱医院/广州医科大学附属脑科医院, 广东 广州 510370; 5.广东省老年痴呆诊断与康复工程技术研究中心, 广东 广州 510500;6.国家医疗保健器具工程技术研究中心, 广东 广州 510500
Author(s):
WANG Jing1 KONG Lingyin2 LEI Bingye2 WU Kai2 3 4 5 6
1. School of Biomedical Engineering, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China 2. Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China 3. Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China 4. Guangzhou Huiai Hospital/the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China 5. Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Alzheimers Disease, Guangzhou 510500, China 6. National Engineering Technology Research Center for Healthcare Devices, Guangzhou 510500, China
关键词:
抑郁症图论脑复杂网络结构网络功能网络综述
Keywords:
Keywords: depression graph theory complex brain network structural network functional network review
分类号:
R318;R749.4
DOI:
DOI:10.3969/j.issn.1005-202X.2020.06.023
文献标志码:
A
摘要:
抑郁症是一种伴有情绪和认知功能损害、临床表现多样的常见精神性疾病。随着影像技术的发展,抑郁症伴随着大脑特定区域的结构和功能网络异常已被得到广泛证实。基于图论的脑复杂网络分析提示了抑郁症中大规模功能性和结构性脑网络的拓扑结构紊乱,这为早期发现抑郁症提供了潜在的有价值的生物标记物。本文综述近年来抑郁症的脑复杂网络研究进展,进而分析现有研究中基本结果和潜在不足,最后展望了未来可能的发展方向。
Abstract:
Abstract: Depression is a common mental illness with emotional and cognitive impairments and varied clinical manifestations. With the development of imaging technology, it has been widely confirmed that depression is accompanied by abnormalities in the structural and functional networks of specific brain regions. The complex brain network analysis based on graph theory indicates the large-scale topological disorder of functional and structural brain networks in depression, which provides a potential biomarker for the early detection of depression. Herein the recent advances in research on the complex brain networks in depression are reviewed, and the basic results and potential shortcomings of the existing researches are further analyzed. Finally, the possible future development direction is discussed.

相似文献/References:

[1]郭家梁,等.基于振幅-周期二维分布的脑电复杂度分析[J].中国医学物理学杂志,2016,33(6):633.[doi:10.3969/j.issn.1005-202X.2016.06.019]
[2]李均,杨澄,王远军,等.基于弥散张量成像构建阿尔茨海默病患者脑网络的研究进展[J].中国医学物理学杂志,2017,34(2):204.[doi:10.3969/j.issn.1005-202X.2017.02.018]
 Progress in brain network construction for patients with Alzheimer’s disease based on diffusion tensor imaging[J].Chinese Journal of Medical Physics,2017,34(6):204.[doi:10.3969/j.issn.1005-202X.2017.02.018]
[3]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(6):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[4]付常洋,王瑜,肖洪兵,等.基于多尺度功能脑网络融合特征的抑郁症分类算法[J].中国医学物理学杂志,2020,37(4):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
 FU Changyang,WANG Yu,XIAO Hongbing,et al.Classification of depression using fusion features based on multi-scale functional brain network[J].Chinese Journal of Medical Physics,2020,37(6):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
[5]吴华旺,佘生林,郑伟,等.基于脑网络组图谱的首发-未服药抑郁症白质结构网络研究[J].中国医学物理学杂志,2021,38(7):909.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.023]
 WU Huawang,SHE Shenglin,et al.Brainnetome atlas-based investigation of white matter structural networks in drug-na?e first-episode major depressive disorder[J].Chinese Journal of Medical Physics,2021,38(6):909.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.023]
[6]计亚荣,王瑜,付常洋,等.基于典型相关分析与双模态数据融合的抑郁症辅助诊断[J].中国医学物理学杂志,2021,38(10):1316.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.024]
 JI Yarong,WANG Yu,FU Changyang,et al.Aided diagnosis of major depressive disorder based on canonical correlation analysis and bimodal data fusion[J].Chinese Journal of Medical Physics,2021,38(6):1316.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.024]
[7]刁云恒,王慧颖,董娇,等.机器学习在抑郁症辅助诊断中的应用进展[J].中国医学物理学杂志,2022,39(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]
 DIAO Yunheng,WANG Huiying,et al.Advances in the application of machine learning in auxiliary diagnosis of depression[J].Chinese Journal of Medical Physics,2022,39(6):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]
[8]段逸凡,王瑜,付常洋,等.基于双模态磁共振成像和决策层融合的抑郁症辅助诊断[J].中国医学物理学杂志,2022,39(3):378.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.019]
 DUAN Yifan,WANG Yu,FU Changyang,et al.Auxiliary diagnosis of depression based on bimodal magnetic resonance imaging and decision level fusion[J].Chinese Journal of Medical Physics,2022,39(6):378.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.019]
[9]吴彦泽,王海玲,高宇飞.基于脑电的脑网络稳定模式情绪识别研究[J].中国医学物理学杂志,2023,40(6):727.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.010]
 WU Yanze,WANG Hailing,GAO Yufei.Stable brain network pattern for EEG-based emotion recognition[J].Chinese Journal of Medical Physics,2023,40(6):727.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.010]
[10]郭朝晖,王瑜,马慧鋆,等.基于迁移学习和3D-WGMobileNet的青年抑郁症辅助诊断[J].中国医学物理学杂志,2024,41(4):455.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.010]
 GUO Zhaohui,WANG Yu,MA Huijun,et al.Diagnosis of youth depression based on transfer learning and 3D-WGMobileNet[J].Chinese Journal of Medical Physics,2024,41(6):455.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.010]

备注/Memo

备注/Memo:
【收稿日期】2019-11-21 【基金项目】国家自然科学基金(31771074,81802230);国家重点研发计划(2020YFC2004301, 2019YFC0118802, 2019YFC0118804, 2019YFC0118805);广东省科技重点领域研发计划项目(2018B030335001);广州市产学研协同创新重大专项(201704020168, 201704020113, 201807010064, 20180301- 0100, 201903010032) 【作者简介】王静,硕士,副教授,研究方向:医学图像处理及人脑连接组学,E-mail: happyjing00@163.com 【通信作者】吴凯,博士,副教授,硕士生导师,研究方向:医学影像、智能医疗器械、智能医疗系统等,E-mail: kaiwu@scut.edu.cn
更新日期/Last Update: 2020-07-03