[1]刘莉,姚京京,李俊,等. 基于共词分析和可视化的高血压疾病关联性挖掘[J].中国医学物理学杂志,2019,36(5):614-620.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.024]
 LIU Li,YAO Jingjing,LI Jun,et al. Hypertension related association mining based on co-word analysis and visualization[J].Chinese Journal of Medical Physics,2019,36(5):614-620.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.024]
点击复制

 基于共词分析和可视化的高血压疾病关联性挖掘()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第5期
页码:
614-620
栏目:
其他(激光医学等)
出版日期:
2019-05-25

文章信息/Info

Title:
 Hypertension related association mining based on co-word analysis and visualization
文章编号:
1005-202X(2019)05-0614-07
作者:
 刘莉1姚京京1李俊2陈先来3周宇葵1
1.中南大学生命科学学院, 湖南 长沙 410013; 2.中南大学湘雅口腔医学院, 湖南 长沙 410008; 3.中南大学信息安全与大数据研究院, 湖南 长沙 410083
Author(s):
LIU Li1 YAO Jingjing1 LI Jun2 CHEN Xianlai3 ZHOU Yukui1
 1. School of Life Science, Central South University, Changsha 410013, China; 2. Xiangya School of Stomatology, Central South University, Changsha 410008, China; 3. Institute of Information Security and Big Data, Central South University, Changsha 410083, China
关键词:
 电子病历病案首页高血压共词分析可视化
Keywords:
 Keywords: electronic medical record medical record home page hypertension co-word analysis visualization
分类号:
TP391;R312
DOI:
DOI:10.3969/j.issn.1005-202X.2019.05.024
文献标志码:
A
摘要:
 目的:对高血压患者电子病历病案首页进行分析挖掘,揭示其中疾病诊断之间的关系。方法:以共词分析为基础,通过Python语言构建分析模块,采用Gephi复杂网络分析软件对结果进行展示。结果:基于3 632条电子病历记录,构建包含疾病诊断节点1 029个,共现关系边12 479条的疾病诊断共现网络,发现共现关系较强的疾病诊断集群。结论:从多角度、多层面对疾病诊断共现网络进行解读,并以可视化图谱的方式展示,揭示疾病诊断之间关系,为下一步构建更加完善的疾病图谱奠定基础。
Abstract:
Abstract: Objective To analyze and mine the electronic medical record home page of patients with hypertension, and to reveal the relationships among disease diagnoses. Methods Based on the co-word analysis, the analysis module was established by Python language, and the analysis results were displayed by Gephi complex network analysis software. Results Based on 3 362 electronic medical records, a disease diagnosis co-occurrence network containing 1 029 disease diagnosis nodes and 12 479 co-occurrence relationship lines was constructed, and a disease diagnosis cluster with strong co-occurrence relationship was found. Conclusion The disease diagnosis co-occurrence network can be interpreted from multi-angle and multi-level, and can be displayed in a visual map to reveal the relationships among disease diagnoses, laying a foundation for the further establishment of a more complete disease map.

相似文献/References:

[1]辛华坤,焦 青,胡 磊,等.基于SQL SERVER2008的眼科电子病历系统的研制[J].中国医学物理学杂志,2014,31(01):4646.[doi:10.3969/j.issn.1005-202X.2014.01.012]
[2]李小华,刘晓辉,冯前进,等.基于电子病历的医院信息平台的关键技术[J].中国医学物理学杂志,2014,31(02):4772.[doi:10.3969/j.issn.1005-202X.2014.02.013]
[3]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(5):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[4]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(5):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[5]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(5):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[6]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(5):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[7]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(5):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[8]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(5):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[9]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(5):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[10]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(5):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[11]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(5):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]

备注/Memo

备注/Memo:
 【收稿日期】2019-01-19
【基金项目】国家重点研发计划(2016YFC0901705)
【作者简介】刘莉,副教授,E-mail: 332140915@qq.com;姚京京,在读硕士研究生,E-mail: 446124548@qq.com
【通信作者】李俊,讲师,主要研究方向:医院信息系统、计算机网络,E-mail: lijun2016@csu.edu.cn
更新日期/Last Update: 2019-05-23