[1]李俊禹,吴昊,杨敬贤,等.基于Varian锥形束CT影像质量的直线加速器选择策略[J].中国医学物理学杂志,2019,36(12):1367-1372.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.001]
 LI Junyu,WU Hao,YANG Jingxian,et al.LINAC selection strategy based on quality of Varian cone beam CT image[J].Chinese Journal of Medical Physics,2019,36(12):1367-1372.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.001]
点击复制

基于Varian锥形束CT影像质量的直线加速器选择策略()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第12期
页码:
1367-1372
栏目:
医学放射物理
出版日期:
2019-12-25

文章信息/Info

Title:
LINAC selection strategy based on quality of Varian cone beam CT image
文章编号:
1005-202X(2019)12-1367-06
作者:
李俊禹1吴昊1杨敬贤1李廷廷2于松茂1卢子红1李玮博3王美娇1李晨光1张艺宝1
1.北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科/恶性肿瘤发病机制及转化研究教育部重点实验室, 北京 100142; 2.中国人民解放军第302医院, 北京 100039; 3.德国亥姆霍兹慕尼黑研究中心-德国环境健康研究中心放射医学所, 德国 Neuherberg 85764
Author(s):
LI Junyu1 WU Hao1 YANG Jingxian1 LI Tingting2 YU Songmao1 LU Zihong1 LI Weibo3WANG Meijiao1 LI Chenguang1 ZHANG Yibao1
1. Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; 2. 302 Military Hospital of Chinese PLA, Beijing 100039, China; 3. Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolst?dter Landstr., Neuherberg 85764, Germany
关键词:
图像引导放疗千伏锥形束CT直线加速器影像质量
Keywords:
Keywords: image-guided radiotherapy kilo-voltage cone beam CT linear accelerator image quality
分类号:
R815.6;R318
DOI:
DOI:10.3969/j.issn.1005-202X.2019.12.001
文献标志码:
A
摘要:
目的:定量分析不同锥形束CT(CBCT)影像特点,从而为患者选择最佳设备。方法:利用CatPhan604模体分析Edge、TrueBeam及新旧ix机载CBCT头、胸、盆模式图像。结果:12组图像头、胸、盆CT值最准确的是ix新机器、TrueBeam、Edge,分别为5.69、0.81、6.74 HU;CT值线性最好的是ix旧机器或新机器、Edge、Edge,分别为0.995、0.996、0.997;线性距离误差最小的是ix旧机器、Edge、Edge或TrueBeam或ix旧机器,分别为0.050、0.075、0.100 mm;角度误差最小的是ix旧机器、Edge或TrueBeam、Edge或ix新机器,分别为0.075°、0.050°、0.075°。头、胸、盆高对比度分辨率最好的是ix旧机器、Edge、Edge,分别为7、5、5 LP/cm;均匀性最好的是Edge、Edge、Edge,分别为4.78、20.19、4.63。头、胸、盆噪声最好的是Edge、ix新机器、ix新机器,分别为27.53、8.67、7.33;信噪比最好的是Edge、TrueBeam、ix新机器,分别为83.17、124.39、288.39;对比度噪声比最好的是Edge、ix新机器、ix新机器,分别为11.92、41.42、51.47。低对比度分辨率头部未可见,胸、盆部最好的是Edge或TrueBeam、Edge,分别为6.00、3.75。结论:CBCT系统间差异大,为患者选择加速器时应考虑成像特点,如自适应放疗选择高CT值线性和准确性,立体定向放疗选择低距离和角度误差设备等。
Abstract:
Abstract: Objective To quantitatively analyze the features of different cone beam CT (CBCT) images for selecting the optimal LINAC for patients. Methods CatPhan604 phantom was used for evaluating the quality of the images of head, thorax and pelvis which were obtained by 4 CBCT mounted on an Edge, a TrueBeam, and 2 ix (ix New and ix Old). Results Of the 12 image sets, the best accurate CT number for the head, thorax and pelvis was observed on ix New, TrueBeam, and Edge, respectively, and the corresponding value was 5.69, 0.81, 6.74 HU, respectively. The best CT number linearity was found on ix New or ix Old (0.995), Edge (0.996), and Edge (0.997), respectively. Moreover, ix Old, Edge, and Edge or TrueBeam or ix Old had the minimal linear distance errors, which were 0.050, 0.075, 0.100 mm, respectively; and ix Old, Edge or TrueBeam, and Edge or ix New had the smallest angular errors, which were 0.075°, 0.050°, and 0.075°, respectively. For the head, thorax and pelvis, the best contrast resolution (7, 5, and 5 LP/cm, respectively) was achieved by ix Old, Edge, and Edge, respectively; and the best homogeneity (4.78, 20.19, and 4.63, respectively) was obtained by Edge, Edge, and Edge. The lowest noise for the head, thorax and pelvis was observed on Edge, ix New, and ix New, which were 27.53, 8.67, and 7.33, respectively; the best signal-to-noise ratio was observed on Edge, TrueBeam, and ix New, which were 83.17, 124.39, and 288.39, respectively; and the best contrast-to-noise ratio was observed on Edge, ix New, and ix New, which were 11.92, 41.42, and 51.47, respectively. No low contrast resolution was found in the head, while Edge or TrueBeam, and Edge achieved the best low contrast resolution (6.00 and 3.75) for thorax and pelvis. Conclusion Large inter-system varieties are observed among different CBCT systems. When choosing an appropriate machine for a special patient, imaging features should also be considered. For instance, LINAC with CBCT that can provide better CT number linearity and accuracy should be assigned for a patient undergoing adaptive radiotherapy, while machines with lower distance and angular errors should be chosen for patients having stereotactic radiotherapy.

相似文献/References:

[1]蒋晓芹,李 涛,钟仁明,等.模体大小对CBCT图像剂量计算的影响[J].中国医学物理学杂志,2014,31(05):5160.[doi:10.3969/j.issn.1005-202X.2014.05.015]
[2]朱夫海,吴伟章,王勇,等.胰腺癌患者螺旋断层放疗摆位误差分析[J].中国医学物理学杂志,2013,30(06):4480.[doi:10.3969/j.issn.1005-202X.2013.06.003]
[3]田龙,席强,赵鑫,等. 膀胱癌图像引导放疗中基于软组织灰度值与基于内植标记物的锥形束CT校准比较[J].中国医学物理学杂志,2018,35(1):31.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.007]
 TIAN Long,XI Qiang,ZHAO Xin,et al. Comparison of cone beam computed tomography calibrations based on soft tissue grey value and implanted markers in image-guided radiotherapy for bladder cancer[J].Chinese Journal of Medical Physics,2018,35(12):31.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.007]
[4]田龙,席强,赵鑫,等. 膀胱癌图像引导放疗中基于骨骼与基于内植标记物锥形束CT校准比较[J].中国医学物理学杂志,2019,36(6):647.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.006]
 TIAN Long,XI Qiang,ZHAO Xin,et al. Comparison between CBCT calibrations based on skeleton vs implanted markers in image-guided radiotherapy for bladder cancer[J].Chinese Journal of Medical Physics,2019,36(12):647.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.006]
[5]王海洋,毛凯,武建安,等.Tomotherapy不同MVCT扫描模式的成像剂量及对儿童患者位置验证精度的影响[J].中国医学物理学杂志,2020,37(1):7.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.002]
 WANG Haiyang,MAO Kai,WU Jianan,et al.Imaging doses and positioning accuracy under different scanning modes of Tomotherapy MVCT for pediatric patients[J].Chinese Journal of Medical Physics,2020,37(12):7.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.002]
[6]张静,范学武,田龙,等.基准标志物在前列腺癌图像引导放疗中的应用[J].中国医学物理学杂志,2023,40(4):397.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.001]
 ZHANG Jing,FAN Xuewu,TIAN Long,et al.Application of fiducial marker in image-guided radiotherapy of prostate cancer[J].Chinese Journal of Medical Physics,2023,40(12):397.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.001]
[7]吴书裕,王伟,阳露,等.基于自监督生成对抗网络的锥形束CT合成伪CT研究[J].中国医学物理学杂志,2023,40(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.007]
 WU Shuyu,WANG Wei,YANG Lu,et al.Synthetic CT generation from CBCT images using self-attention generative adversarial network[J].Chinese Journal of Medical Physics,2023,40(12):1356.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.007]
[8]陈宇亭,周飞宇,张富利,等.兆伏级CT图像引导自适应放疗中生成合成CT研究[J].中国医学物理学杂志,2024,41(7):813.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.005]
 CHEN Yuting,ZHOU Feiyu,et al.Generating synthetic CT in megavoltage CT image-guided adaptive radiotherapy[J].Chinese Journal of Medical Physics,2024,41(12):813.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.005]

备注/Memo

备注/Memo:
【收稿日期】2019-07-20 【基金项目】首都卫生发展科研专项(首发2018-4-1027);北京市自然科学基金(7172048);教育部科技发展中心产学研创新基金-“智融兴教”基金(2018A01019);国家自然科学基金(11505012);四川省科技计划项目(2018HH0099);北京市属医院科研培育计划项目(PX2019042);北京市医院管理局“青苗”计划专项(QML20171104) 【作者简介】李俊禹,主管技师,研究方向:放射治疗技术,E-mail: lijunyu5534@126.com 【通信作者】张艺宝,博士,高级工程师,研究方向:医学物理,E-mail: ybzhang66@163.com
更新日期/Last Update: 2019-12-24