[1]吴迪,胡胜,刘伟峰,等. 基于特征融合视觉显著性的医学图像分割[J].中国医学物理学杂志,2018,35(6):670-675.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
 WU Di,HU Sheng,LIU Weifeng,et al. Medical image segmentation based on visual saliency of feature fusion[J].Chinese Journal of Medical Physics,2018,35(6):670-675.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
点击复制

 基于特征融合视觉显著性的医学图像分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第6期
页码:
670-675
栏目:
医学影像物理
出版日期:
2018-06-22

文章信息/Info

Title:
 Medical image segmentation based on visual saliency of feature fusion
文章编号:
1005-202X(2018)06-0670-06
作者:
 吴迪1胡胜2刘伟峰3胡灵芝1胡俊华1
 1.陕西中医药大学基础医学院, 陕西 咸阳 712046; 2.西安工程大学机电工程学院, 陕西 西安 710048; 3.杭州电子科技大学自动化学院, 浙江 杭州 310018
Author(s):
 WU Di1 HU Sheng2 LIU Weifeng3 HU Lingzhi1 HU Junhua1
 1. School of Basic Medical Science, Shaanxi University of Chinese Medicine, Xianyang 712046, China; 2. School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, China; 3. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
关键词:
 医学图像分割视觉显著性特征属性特征融合
Keywords:
 medical image segmentation visual saliency feature attribute feature fusion
分类号:
R311; TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2018.06.010
文献标志码:
A
摘要:
 医学图像分割结果的准确性对医生诊断病情并制定相应的治疗策略具有重要价值。针对现有的医学图像进行分割时由于没有考虑人类视觉显著性机制因素导致分割精度不高的问题,提出一种基于特征融合视觉显著性的医学图像分割方法。首先基于频率调谐生成待分割医学图像的显著图,得到图像的显著区域并突出医学图像的边缘轮廓,然后分别提取其颜色特征和纹理特征将其作为反向传播神经网络的输入向量,在此基础上用神经网络分类器模型对图像进行分割。通过实验进行验证,结果表明该方法获得了较好的分割精度和分割效率,本文所提方法为医学图像的准确分割提供了一种新途径。
Abstract:
 Abstract: The accuracy of medical image segmentation results is of great value for the doctor to diagnose the disease and develop appropriate treatment strategies. In view of the problem that the existing medical image segmentation methods have not considered the human visual saliency which leads to a lower segmentation accuracy, we propose a method for medical image segmentation based on the visual saliency of feature fusion. Firstly, based on frequency tuning, a saliency map is generated for the medical images to be segmented in order to obtain the salient regions and highlight the edge of the medical images. Then the color features and texture features are extracted separately to form the input vectors of back propagation neural network. Finally, the back propagation neural network model is used to achieve medical image segmentation. The proposed method is verified by experiments, and the results show that the proposed visual saliency of feature fusion algorithm for medical images segmentation could achieve a high efficiency and an ideal accuracy. The proposed method provides a new way for medical image segmentation.

相似文献/References:

[1]万俊,聂生东,王远军,等.基于MRI的脑肿瘤分割技术研究进展[J].中国医学物理学杂志,2013,30(04):4266.[doi:10.3969/j.issn.1005-202X.2013.04.013]
[2]林江,戴齐,欧阳婷雪,等.一种边界和马尔可夫随机场相结合的脑MRI医学图像分割方法[J].中国医学物理学杂志,2015,32(05):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
 [J].Chinese Journal of Medical Physics,2015,32(6):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
[3]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[4]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[5]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[6]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[7]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[8]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(6):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[9]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(6):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[10]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(6):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[11]刘国才,官文静,田娟秀,等. 集成自适应回归核的肿瘤生物靶区随机游走勾画方法[J].中国医学物理学杂志,2018,35(7):758.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.004]
 LIU Guocai,GUAN Wenjing,TIAN Juanxiu,et al. A random walk method with adaptive regression-kernel for delineation of biological target volumes of tumors[J].Chinese Journal of Medical Physics,2018,35(6):758.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.004]
[12]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(6):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]

备注/Memo

备注/Memo:
 【收稿日期】2018-02-03
【基金项目】国家自然科学基金(61771177);浙江省自然科学基金(LY15F030020)
【作者简介】吴迪,硕士,研究方向:医学图像处理与分析,E-mail: wudi_di00@163.com
更新日期/Last Update: 2018-06-22