[1]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404-409.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(4):404-409.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
点击复制

 基于KPCA算法的阿尔茨海默症辅助诊断()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第4期
页码:
404-409
栏目:
医学影像物理
出版日期:
2018-04-21

文章信息/Info

Title:
 Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm
文章编号:
1005-202X(2018)04-0404-06
作者:
 周文王瑜肖红兵曹利红
 北京工商大学计算机与信息工程学院食品安全大数据技术北京市重点实验室, 北京 100048
Author(s):
 ZHOU Wen WANG Yu XIAO Hongbing CAO Lihong
 Key Laboratory of Food Safety Big Data Technology, School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China
关键词:
 阿尔茨海默症结构磁共振成像核主成分分析特征提取机器学习
Keywords:
 Alzheimer’s disease structural magnetic resonance imaging kernel principal component analysis feature extraction machine learning
分类号:
R742;TP317.4
DOI:
DOI:10.3969/j.issn.1005-202X.2018.04.007
文献标志码:
A
摘要:
 阿尔茨海默症(AD)是一种起病隐匿、进行性发展的神经系统退行性疾病,利用磁共振成像和计算机技术对AD患者的辅助诊断是目前不断探索的新课题。本研究先对磁共振图像进行预处理和相关性分析,然后利用核主成分分析法(KPCA)对脑灰质图像进行特征提取,结合Adaboost算法进行分类,并与主成分分析法(PCA)进行对比试验。通过对AD神经影像学计划数据库中的116名AD患者、116名轻度认知障碍患者,以及117名正常对照的脑部功能磁共振成像进行的研究表明,利用机器学习能够很有效地辅助诊断AD脑部疾病,KPCA算法对图像进行特征提取比PCA 算法更加充分完备,分类结果更加精确,能够获得更好的AD辅助诊断结果。
Abstract:
 Alzheimer’s disease (AD) is a degenerative disease of nervous system development with insidious onset. Using magnetic resonance imaging (MRI) and computer technology for the assisted diagnosis of AD patients is a new topic which is gradually explored at present. Preprocessing and correlation analysis on MRI image are firstly performed. Then kernel principal component analysis (KPCA) is used to extract features of brain gray matter images. Then the extracted features are classified with Adaboost algorithm, and the result was compared with that classified by principal component analysis. Experimental results in AD Neuroimaging Initiative Database which contains brain structural MRI images of 116 AD patients, 116 patients with mild cognitive impairment, and 117 normal controls show that machine learning can effectively assist the diagnosis of brain diseases in AD patient. Compared with principal component analysis, KPCA algorithm is more complete for the feature extraction and more accurate for the classification. Using the proposed method in AD diagnosis can obtain more robust assisted diagnosis results.

相似文献/References:

[1]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(4):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[2]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(4):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[3]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(4):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[4]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(4):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[5]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(4):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[6]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(4):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[7]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(4):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[8]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(4):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[9]陈亚正,肖明勇,孙春堂,等. 准直器角度对宫颈癌术后VMAT计划的影响[J].中国医学物理学杂志,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
 [J].Chinese Journal of Medical Physics,2016,33(4):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
[10]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(4):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]

备注/Memo

备注/Memo:
 【收稿日期】2017-10-24
【基金项目】国家自然科学基金(61671028);北京市自然科学基金(4162018);北京市委组织部“高创计划”青年拔尖人才培养资助项目(2014000026833ZK14);北京市青年拔尖人才培育计划项目(CIT&TCD201504010)
【作者简介】周文,硕士研究生,研究领域:医学图像处理、模式识别,E-mail: 1090504938@qq.com
【通信作者】王瑜,博士,副教授,硕士生导师,研究领域:医学图像处理、模式识别,E-mail: wangyu@btbu.edu.cn
更新日期/Last Update: 2018-04-23