相似文献/References:
[1]靳珍怡,王远军.基于非下采样轮廓波变换的多模态医学图像融合[J].中国医学物理学杂志,2016,33(5):445.[doi:10.3969/j.issn.1005-202X.2016.05.004]
[J].Chinese Journal of Medical Physics,2016,33(06):445.[doi:10.3969/j.issn.1005-202X.2016.05.004]
[2]靳珍怡,王远军,聂生东. 梯度域三维头部PETCT图像融合[J].中国医学物理学杂志,2017,34(3):246.[doi:10.3969/j.issn.1005-202X.2017.03.006]
[J].Chinese Journal of Medical Physics,2017,34(06):246.[doi:10.3969/j.issn.1005-202X.2017.03.006]
[3]张光玉,徐龙春,张敏风,等.NIFTI格式医学图像显示方法研究[J].中国医学物理学杂志,2017,34(7):681.[doi:10.3969/j.issn.1005-202X.2017.07.006]
[J].Chinese Journal of Medical Physics,2017,34(06):681.[doi:10.3969/j.issn.1005-202X.2017.07.006]
[4]李壮玲,钟鹤立,李先明,等.高级别脑胶质瘤术后VMAT与IMRT剂量学比较[J].中国医学物理学杂志,2017,34(7):719.[doi:10.3969/j.issn.1005-202X.2017.07.014]
[J].Chinese Journal of Medical Physics,2017,34(06):719.[doi:10.3969/j.issn.1005-202X.2017.07.014]
[5]皮一飞,吴茜,裴曦,等.基于掩膜优化的多模态医学图像刚性配准[J].中国医学物理学杂志,2018,35(9):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
PI Yifei,WU Qian,PEI Xi,et al.Rigid registration of multimodal medical images based on mask optimization[J].Chinese Journal of Medical Physics,2018,35(06):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
[6]杨玉刚,齐洪志,许林,等. 适形指数在宫颈癌放疗评价中的应用[J].中国医学物理学杂志,2019,36(3):265.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.004]
YANG Yugang,QI Hongzhi,XU Lin,et al. Application of conformity index in the evaluation of radiotherapy for cervical carcinoma[J].Chinese Journal of Medical Physics,2019,36(06):265.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.004]
[7]谢丽娜,马瑾璐,韩苏夏. 多模态小动物成像设备在恶性肿瘤应用中的研究进展[J].中国医学物理学杂志,2019,36(10):1191.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.015]
XIE Lina,MA Jinlu,HAN Suxia. Progress of small animal multi-modality imaging equipment in research on malignant tumors[J].Chinese Journal of Medical Physics,2019,36(06):1191.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.015]
[8]薛湛琦,王远军.基于深度学习的多模态医学图像融合方法研究进展[J].中国医学物理学杂志,2020,37(5):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]
XUE Zhanqi,WANG Yuanjun.Advances in multimodal medical image fusion method based on deep learning[J].Chinese Journal of Medical Physics,2020,37(06):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]
[9]张泽茹,李兆同,刘良友,等.融合感知损失的深度学习在常规MR图像转换的研究[J].中国医学物理学杂志,2021,38(2):178.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
ZHANG Zeru,LI Zhaotong,et al.Application of deep learning with perceptual loss in conventional MR image translation[J].Chinese Journal of Medical Physics,2021,38(06):178.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.010]
[10]郭翌,吴香奕,吴茜,等.基于循环一致生成对抗网络的多模态影像刚性配准[J].中国医学物理学杂志,2021,38(2):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]
GUO Yi,WU Xiangyi,WU Qian,et al.Rigid registration of multimodal images based on CycleGAN[J].Chinese Journal of Medical Physics,2021,38(06):198.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.013]