相似文献/References:
[1]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(9):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[2]师文博,杨环,西永明,等.基于自注意力的双通路全脊柱 X 光图像分割模型[J].中国医学物理学杂志,2022,39(11):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
SHI Wenbo,YANG Huan,XI Yongming,et al.Self-attention based dual pathway network for spine segmentation in X-ray image[J].Chinese Journal of Medical Physics,2022,39(9):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
[3]周信宏,黄钢.PET-CT多模态融合在图像语义分割的应用进展[J].中国医学物理学杂志,2023,40(6):683.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.004]
ZHOU Xinhong,HUANG Gang.Multimodal fusion of PET-CT for semantic image segmentation: a review[J].Chinese Journal of Medical Physics,2023,40(9):683.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.004]
[4]朱世祺,徐昶,周鑫,等.基于DeepLab V3+深度神经网络的结直肠息肉内镜图像分割[J].中国医学物理学杂志,2023,40(8):944.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.004]
ZHU Shiqi,XU Chang,et al.Colorectal polyp segmentation in endoscopic images using DeepLab V3+[J].Chinese Journal of Medical Physics,2023,40(9):944.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.004]
[5]刘潇霜,张伟.采用融合ResNet和Transformer的U-Net进行疟疾感染红细胞分割[J].中国医学物理学杂志,2024,41(2):191.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.011]
LIU Xiaoshuang,ZHANG Wei.Segmentation of malaria-infected erythrocytes using U-Net incorporating Transformer and ResNet[J].Chinese Journal of Medical Physics,2024,41(9):191.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.011]
[6]邓杰夫,奚峥皓,黄陈,等.基于交叉注意力的CT与MRI直肠癌病灶分割方法[J].中国医学物理学杂志,2024,41(8):953.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.005]
DENG Jiefu,XI Zhenghao,HUANG Chen,et al.Segmentation of rectal cancer lesions on CT and MRI based on cross attention[J].Chinese Journal of Medical Physics,2024,41(9):953.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.005]