[1]刘沐然,谭敏慧,张煜.基于深度学习对 CBCT 图像采用多视角投影的牙齿分类[J].中国医学物理学杂志,2025,42(3):313-319.[doi:10.3969/j.issn.1005-202X.2025.03.005]
 LIU Muran,TAN Minhui,et al.Classification of teeth in CBCT images using deep learning with multi-view projection[J].Chinese Journal of Medical Physics,2025,42(3):313-319.[doi:10.3969/j.issn.1005-202X.2025.03.005]
点击复制

基于深度学习对 CBCT 图像采用多视角投影的牙齿分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第3期
页码:
313-319
栏目:
医学影像物理
出版日期:
2025-03-20

文章信息/Info

Title:
Classification of teeth in CBCT images using deep learning with multi-view projection
文章编号:
1005-202X(2025)03-0313-07
作者:
刘沐然 12谭敏慧 2张煜 1
1. 南方医科大学生物医学工程学院,广东 广州 510515;2. 上海科技大学生物医学工程学院,上海 201210
Author(s):
LIU Muran1 2 TAN Minhui2 ZHANG Yu1
1. School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; 2. School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
关键词:
深度学习锥形束计算机断层扫描牙齿识别多视角投影
Keywords:
deep learning cone beam computed tomography tooth identification multi-view projection
分类号:
R318
DOI:
10.3969/j.issn.1005-202X.2025.03.005
文献标志码:
A
摘要:
目的:针对当前基于锥形束计算机断层扫描(CBCT)图像的牙齿分类方法过于依赖精确分割,缺少对牙齿形态和位 置信息的综合利用,提出一种基于多视角投影和 Transformer 架构的牙齿分类方法,可对全年龄层的 CBCT 图像中的牙齿 (包括儿童病例)进行准确的 52 分类。方法:通过引入多视角投影,结合 Transformer 架构,融合语义分割和实例分割,由粗 至细进行牙齿分类任务,增强对牙齿空间位置信息的利用。采用国际牙科联盟(FDI)两位数牙位标记法对 CBCT 图像中 的牙齿进行分类,并对多视角融合效果进行评估。结果:改进后的方法能够准确区分恒牙与乳牙,同时有效地进行牙齿编 号,牙齿层面的分类准确率达到 0.982。结论:基于多视角投影与 Transformer 架构的牙齿分类方法实现对牙齿类别与位 置信息的有效融合,提高牙齿分类的精度,为个性化治疗方案的制定提供更为精确的基础。
Abstract:
Objective To address the issue that current methods for classifying teeth in cone beam computed tomography (CBCT) images overly rely on precise segmentation and lack utilization of tooth morphology and positional information, a tooth classification method based on multi-view projection and Transformer architecture is proposed for accurately classifying teeth from CBCT images across all age groups, including pediatric cases, into 52 categories. Methods The coarseto-fine tooth classification task was accomplished after enhancing the utilization of spatial positional information of the teeth by incorporating multi-view projection, integrating Transformer architecture, and combining semantic segmentation with instance segmentation. The two-digit notation system of the Federation Dentaire Internationale was adopted for classifying the teeth in CBCT images, and evaluating the effectiveness of multi-view fusion. Results The improved method effectively classified and numbered both permanent and deciduous teeth, achieving a tooth-level classification accuracy of 0.982. Conclusion The tooth classification method based on multi-view projection and Transformer architecture successfully integrates tooth category and positional information, and improves the accuracies of tooth classification and numbering, providing a more precise foundation for the formulation of personalized treatment schemes.

相似文献/References:

[1]李岩峰,郭晓倩,陈 燕,等.利用CBCT行双侧颞下颌关节对比测量的技术探讨[J].中国医学物理学杂志,2014,31(02):4810.[doi:10.3969/j.issn.1005-202X.2014.02.021]
[2]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(3):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(3):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(3):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(3):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[8]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[9]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(3):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[10]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(3):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]

备注/Memo

备注/Memo:
【收 稿 日 期】2024-11-12 【基 金 项 目】国 家 自 然 科 学 基 金(82472056);广 东 省 自 然 科 学 基 金 (2024A1515012004) 【作者简介】刘沐然,硕士研究生,研究方向:生物医学成像与图像处 理,E-mail: liumuran2022@163.com 【通信作者】张煜,博士,教授,研究方向:生物医学工程、医学影像智能 处理与分析,E-mail: yuzhang@smu.edu.cn
更新日期/Last Update: 2025-03-27