[1]林海宏,郭苑莉,潘如,等.基于机器学习探究子宫内膜癌免疫微环境与基因表达的关联及其对预后的预测价值[J].中国医学物理学杂志,2024,41(12):1568-1577.[doi:DOI:10.3969/j.issn.1005-202X.2024.12.016]
 LIN Haihong,GUO Yuanli,PAN Ru,et al.Investigation of the association between endometrial cancer immune microenvironment and gene expression based on machine learning and its predictive value for prognosis[J].Chinese Journal of Medical Physics,2024,41(12):1568-1577.[doi:DOI:10.3969/j.issn.1005-202X.2024.12.016]
点击复制

基于机器学习探究子宫内膜癌免疫微环境与基因表达的关联及其对预后的预测价值()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第12期
页码:
1568-1577
栏目:
医学生物信息
出版日期:
2024-12-17

文章信息/Info

Title:
Investigation of the association between endometrial cancer immune microenvironment and gene expression based on machine learning and its predictive value for prognosis
文章编号:
1005-202X(2024)12-1568-10
作者:
林海宏1郭苑莉2潘如1雷南香1曾维红1
1.梅州市人民医院妇科, 广东 梅州 514130; 2.广东药科大学附属第一医院妇产科, 广东 广州 510699
Author(s):
LIN Haihong1 GUO Yuanli2 PAN Ru1 LEI Nanxiang1 ZENG Weihong1
1. Department of Gynaecology, Meizhou Peoples Hospital, Meizhou 514130, China 2. Department of Gynaecology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, China
关键词:
子宫内膜癌机器学习肿瘤基因组图谱免疫基因预后
Keywords:
Keywords: endometrial cancer machine learning the Cancer Genome Atlas program immune gene prognosis
分类号:
R318;R711
DOI:
DOI:10.3969/j.issn.1005-202X.2024.12.016
文献标志码:
A
摘要:
目的:探究子宫内膜癌(Endometrial Cancer, EC)免疫微环境与基因表达的关联及其对预后的预测价值,通过生物信息学分析与机器学习技术,识别关键的免疫相关基因,构建预后模型,以期为EC的个性化治疗提供新的方向。方法:基于TCGA数据库,采用DESeq2、edgeR和limma工具筛选差异表达基因,结合ImmPort数据库筛选免疫相关基因。利用Lasso回归、单变量特征选择、Boruta和随机森林等机器学习算法进行特征基因筛选。通过单因素和多因素Cox回归分析评估基因的预后价值,并构建风险评分模型。采用CIBERSORT算法分析肿瘤免疫浸润,通过免疫组化验证关键基因表达。结果:通过3种差异分析结果与免疫相关基因的交集,确定62个差异表达的免疫基因,并使用多种机器学习模型筛选得到25个潜在生物标志物,其中被机器学习筛选为预后相关基因。单因素和多因素Cox回归分析证实,INHBE、SLURP1和TNFSF11基因与EC患者的生存期显著相关。构建的风险评分模型能够有效区分不同预后组别的生存率,且与免疫细胞浸润程度相关。免疫组化分析进一步验证这些基因在肿瘤与正常组织间的表达差异。结论:INHBE、SLURP1和TNFSF11是EC免疫微环境中关键的预后生物标志物,其表达水平与免疫细胞浸润及患者生存率密切相关,为EC的精准医疗提供理论基础。
Abstract:
Abstract: Objective To investigate the association between the immune microenvironment and gene expression in endometrial cancer (EC) and discuss its predictive value for prognosis, and to identify critical immune-related genes through bioinformatics analysis and machine learning techniques and construct a prognostic model for providing new directions for personalized treatment of EC. Methods Based on data from the Cancer Genome Atlas (TCGA) program, tools such as DESeq2, edgeR, and limma were utilized to screen for differentially expressed genes. Immune-related genes were selected by integrating data from the Immunology Database and Analysis Portal (ImmPort). Machine learning algorithms including Lasso regression, univariate feature selection, Boruta and random forest were employed to refine the selection of feature genes. Univariate and multivariate Cox regression analyses were conducted to assess the prognostic value of the genes, followed by construction of a risk score model. Additionally, tumor immune infiltration was analyzed using CIBERSORT algorithm, and key gene expressions were validated through immunohistochemistry. Results The intersection of 3 difference analysis results and immune-related genes identified 62 differentially expressed immune genes, and 25 potential biomarkers which were selected by a variety of machine learning models were considered as prognosis related genes. Univariate and multivariate Cox regression analyses confirmed that INHBE, SLURP1 and TNFSF11 genes were significantly associated with survival in EC patients. The constructed risk score model effectively distinguished the survival rate of different prognostic groups, and was related to the degree of immune cell infiltration. Immunohistochemical analysis further verified the differences in the expression of these genes between tumor and normal tissues. Conclusion INHBE, SLURP1 and TNFSF11 are key prognostic biomarkers in EC immune microenvironment, and their expression levels are closely associated with immune cell infiltration and patient survival rate, providing theoretical basis for EC precision medicine.

相似文献/References:

[1]何大馨,祝海城,马鹰.阴道彩色多普勒超声结合弹性成像技术对子宫内膜癌的早期诊断价值[J].中国医学物理学杂志,2016,33(11):1163.[doi:10.3969/j.issn.1005-202X.2016.11.016]
 [J].Chinese Journal of Medical Physics,2016,33(12):1163.[doi:10.3969/j.issn.1005-202X.2016.11.016]
[2]王美娇,李莎,岳海振,等. Model Analytics辅助的智能放疗计划建模[J].中国医学物理学杂志,2017,34(9):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
 [J].Chinese Journal of Medical Physics,2017,34(12):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
[3]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(12):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[4]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(12):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
[5]刘渊,程玉玉,贺睿敏,等.基于机器学习的鼻咽癌转移淋巴结鉴别模型[J].中国医学物理学杂志,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
 LIU Yuan,CHENG Yuyu,HE Ruimin,et al.Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(12):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
[6]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(12):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[7]雷炳业,潘嘉瑜,吴逢春,等.基于机器学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
 LEI Bingye,PAN Jiayu,et al.Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J].Chinese Journal of Medical Physics,2020,37(12):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
[8]李彩,范炤.基于机器学习的阿尔兹海默症分类预测[J].中国医学物理学杂志,2020,37(3):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
 LI Cai,FAN Zhao.Classification and prediction of Alzheimer’s disease based on machine learning[J].Chinese Journal of Medical Physics,2020,37(12):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
[9]闫凤,牛振洋,费振乐,等.机器学习在肺癌VMAT计划中对危及器官剂量预测的可行性[J].中国医学物理学杂志,2020,37(7):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
 YAN Feng,NIU Zhenyang,FEI Zhenle,et al.Feasibility of machine learning in OAR dosimetric prediction in VMAT plan for lung cancer[J].Chinese Journal of Medical Physics,2020,37(12):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
[10]黄仕雄,杨松华,王亮,等.基于预测剂量引导的宫颈癌自动计划研究[J].中国医学物理学杂志,2020,37(9):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
 HUANG Shixiong,YANG Songhua,WANG Liang,et al.Automatic planning of radiotherapy for cervical carcinoma based on dose prediction[J].Chinese Journal of Medical Physics,2020,37(12):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]

备注/Memo

备注/Memo:
【收稿日期】2024-09-28 【基金项目】广东省医学科研基金(A2022318);广东省基础与应用基础研究基金(2023A1515220157);梅州市社会发展科学计划(2022C0301003) 【作者简介】林海宏,主治医师,研究方向:妇科肿瘤,E-mail: l_haihong675057@126.com 【通信作者】曾维红,硕士,主任医师,研究方向:妇科肿瘤,E-mail: pasta15914929268@163.com
更新日期/Last Update: 2024-12-20