[1]彭志博,陈勇,崔艳荣.基于YOLOv8m的改进腕部X光片骨折检测算法[J].中国医学物理学杂志,2025,42(4):542-549.[doi:10.3969/j.issn.1005-202X.2025.04.017]
 PENG Zhibo,CHEN Yong,CUI Yanrong.Fracture detection in wrist X-ray image using an improved algorithm based on YOLOv8m[J].Chinese Journal of Medical Physics,2025,42(4):542-549.[doi:10.3969/j.issn.1005-202X.2025.04.017]
点击复制

基于YOLOv8m的改进腕部X光片骨折检测算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第4期
页码:
542-549
栏目:
医学人工智能
出版日期:
2025-04-20

文章信息/Info

Title:
Fracture detection in wrist X-ray image using an improved algorithm based on YOLOv8m
文章编号:
1005-202X(2025)04-0542-08
作者:
彭志博陈勇崔艳荣
长江大学计算机科学学院,湖北 荆州 434000
Author(s):
PENG Zhibo CHEN Yong CUI Yanrong
School of Computer Science, Yangtze University, Jingzhou 434000, China
关键词:
X射线骨折检测深度学习YOLOv8
Keywords:
X-ray fracture detection deep learning YOLOv8
分类号:
R318;TP391
DOI:
10.3969/j.issn.1005-202X.2025.04.017
文献标志码:
A
摘要:
目前腕部X光片的骨折检测存在误诊率高、医疗资源不足等问题。为了辅助医生进行骨折诊断,提出了一种基于YOLOv8m的X光片骨折检测方法。首先引入可分离大核注意力机制来提取重要特征信息,抑制不显著特征信息;然后将残差块融入注意力机制,增强注意力机制的作用,增加模型的泛化能力;最后将可切换空洞卷积与C2f模块结合,增加模型的感受野,捕捉不同尺寸的特征信息。实验结果表明,与先进的YOLOv8l改进模型相比,本文模型mAP50提高了1.3%,由于使用了规格更小的YOLOv8m为基础模型,参数量降低了14.3%,浮点运算次数降低了42.7%。此模型能够辅助放射科医生进行腕部X光片的骨折诊断。
Abstract:
Currently, the fracture detection in wrist X-ray image has high misdiagnosis rates and faces the challenge ofinadequate medical resources. To assist doctors in fracture diagnosis, an improved approach based on YOLOv8m for fracturedetection in wrist X-ray image is proposed: (1) a large separable kernel attention mechanism is introduced to extract crucialfeature information while suppressing insignificant ones; (2) residual block is integrated into the attention mechanism toenhance its effectiveness and the model’s generalization ability; (3) switchable atrous convolution is combined with the C2fmodule to expand the model’s receptive field, enabling it to capture multi-scale feature information. Experimental resultsdemonstrate that compared with the improved model based on the advanced YOLOv8l, the proposed approach achieves a1.3% increase in mAP50. Notably, by adopting the more compact YOLOv8m model as the basic model, parameter count isreduced by 14.3%, and the floating-point operations per second is lowered by 42.7%. The proposed model can effectively aidradiologists in detecting fractures in wrist X-ray image.

相似文献/References:

[1]王明,李辉.同步辐射X射线的医学应用[J].中国医学物理学杂志,2016,33(12):1253.[doi:10.3969/j.issn.1005-202X.2016.12.016]
 [J].Chinese Journal of Medical Physics,2016,33(4):1253.[doi:10.3969/j.issn.1005-202X.2016.12.016]
[2]骆荣辉,吴朝,田扬超. 基于投影的X射线光栅相衬成像系统的仿真模拟[J].中国医学物理学杂志,2017,34(11):1124.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.009]
 LUO Ronghui,WU Zhao,TIAN Yangchao. Numerical simulation of X-ray grating phase contrast imaging system based on projection[J].Chinese Journal of Medical Physics,2017,34(4):1124.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.009]
[3]张夏静,夏天,何培忠.微焦点类同轴X射线相衬成像实验及相位恢复重建[J].中国医学物理学杂志,2018,35(9):1050.[doi:10.3969/j.issn.1005-202X.2018.09.011]
 ZHANG Xiajing,XIA Tian,HE Peizhong.Micro-focus in-line X-ray phase contrast imaging experiment and phase recovery reconstruction[J].Chinese Journal of Medical Physics,2018,35(4):1050.[doi:10.3969/j.issn.1005-202X.2018.09.011]
[4]方春锋,徐伟,宋圆源,等.两台医科达直线加速器匹配后束流特性比较[J].中国医学物理学杂志,2020,37(1):1.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.001]
 FANG Chunfeng,XU Wei,SONG Yuanyuan,et al.Comparison of beam characteristics after beam matching in two Elekta linacs[J].Chinese Journal of Medical Physics,2020,37(4):1.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.001]

备注/Memo

备注/Memo:
【收稿日期】2024-12-20【基金项目】国家自然科学基金(62077018)【作者简介】彭志博,硕士研究生,研究方向:深度学习、计算机视觉,E-mail: 2023720815@yangtzeu.edu.cn【通信作者】陈勇,高级工程师,硕士生导师,研究方向:WEB 信息处理、人工智能,E-mail: 285527563@qq.com
更新日期/Last Update: 2025-04-30