[1]田吉,杨萍,刘佳,等.改进YOLOv5的肺结节检测算法[J].中国医学物理学杂志,2025,42(1):43-51.[doi:DOI:10.3969/j.issn.1005-202X.2025.01.007]
 TIAN Ji,YANG Ping,LIU Jia,et al.Lung nodule detection algorithm based on improved YOLOv5[J].Chinese Journal of Medical Physics,2025,42(1):43-51.[doi:DOI:10.3969/j.issn.1005-202X.2025.01.007]
点击复制

改进YOLOv5的肺结节检测算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第1期
页码:
43-51
栏目:
医学影像物理
出版日期:
2025-01-19

文章信息/Info

Title:
Lung nodule detection algorithm based on improved YOLOv5
文章编号:
1005-202X(2025)01-0043-09
作者:
田吉杨萍刘佳王金华
北京联合大学智慧城市学院, 北京 100101
Author(s):
TIAN Ji YANG Ping LIU Jia WANG Jinhua
College of Smart City, Beijing Union University, Beijing 100101, China
关键词:
YOLOv5肺结节检测下采样算法注意力机制困难样本
Keywords:
Keywords: YOLOv5 lung nodule detection downsampling algorithm attention mechanism hard sample
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2025.01.007
文献标志码:
A
摘要:
针对肺部CT图像中大量小结节难以检测、以及现有肺结节检测算法难以实现轻量化和高精度兼顾的问题,提出改进YOLOv5的高精度轻量化肺结节检测算法。主要改进以下4个方面:(1)使用空间-深度下采样操作替换YOLOv5主干网络中步长为2的下采样操作,使细微特征提取更完整以便于发现微小结节;(2)在YOLOv5颈部使用渐进融合特征策略,构建不同路径特征图之间的联系以增强各个层级之间信息的交互;(3)创造性地提出了感知全局上下文注意力并将其应用在YOLOv5颈部网络的末端,提高模型从全局视角对肺结节关键特征和语义信息的理解能力;(4)采用损失排序挖掘方法重点训练困难样本,以此来强化模型的鉴别能力。改进后的算法在LUNA16数据集上得到了96.0%的精确度,95.0%的召回率和97.3%的平均精度,相比原始YOLOv5模型,精确度提高了14%,召回率提高了10.2%,平均精度提高了12.1%,上述结果表明,改进后的算法可有效检测出肺结节。
Abstract:
To address the challenges of detecting small nodules in lung CT images and achieving a balance between lightweight and high-precision with the existing lung nodule detection algorithms, a high-precision and lightweight lung nodule detection algorithm based on improved YOLOv5 is proposed. The main improvements are focused on 4 aspects. (1) Replacing the stride-2 downsampling operation in the YOLOv5 backbone with space-to-depth downsampling operations to enhance fine feature extraction for detecting small nodules more comprehensively. (2) Employing an asymptotic feature pyramid network in the YOLOv5 neck to establish connections among feature maps from different paths, thereby enhancing interaction among different hierarchical levels. (3) Introducing global context-aware attention to the end of YOLOv5 neck network for improving the models ability to understand key features and semantic information of lung nodules from a global perspective. (4) Utilizing the loss rank mining approach to strategically train on hard samples, thereby strengthening the models discrimination ability. The improved algorithm achieves 96.0% precision, 95.0% recall rate and 97.3% average precision on the LUNA16 dataset, which are 14.0%, 10.2% and 12.1% higher than the original YOLOv5 model, demonstrating its effectiveness for lung nodule detection.

相似文献/References:

[1]潘子妍,邢素霞,逄键梁,等.基于多特征融合与XGBoost的肺结节检测[J].中国医学物理学杂志,2021,38(11):1371.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.010]
 PAN Ziyan,XING Suxia,PANG Jianliang,et al.Lung nodule detection based on multi-feature fusion and XGBoost[J].Chinese Journal of Medical Physics,2021,38(1):1371.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.010]

备注/Memo

备注/Memo:
【收稿日期】2024-09-10 【基金项目】国家自然科学基金(62172045,62272049) 【作者简介】田吉,硕士研究生,研究方向:医学图像处理,E-mail: tj896979@163.com 【通信作者】杨萍,博士,副教授,研究方向:信号与信息处理、医学图像处理,E-mail: xxtyangping@buu.edu.cn
更新日期/Last Update: 2025-01-19