[1]李碧草,王岩,王贝,等.基于自相似性上下文和混合注意力的无监督可变形医学图像配准[J].中国医学物理学杂志,2025,42(3):305-312.[doi:10.3969/j.issn.1005-202X.2025.03.004]
 LI Bicao,WANG Yan,WANG Bei,et al.Unsupervised deformable medical image registration based on self-similarity context and mixed attention[J].Chinese Journal of Medical Physics,2025,42(3):305-312.[doi:10.3969/j.issn.1005-202X.2025.03.004]
点击复制

基于自相似性上下文和混合注意力的无监督可变形医学图像配准()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第3期
页码:
305-312
栏目:
医学影像物理
出版日期:
2025-03-20

文章信息/Info

Title:
Unsupervised deformable medical image registration based on self-similarity context and mixed attention
文章编号:
1005-202X(2025)03-0305-08
作者:
李碧草 1王岩 1王贝 2邵珠宏 3郭旭伟 4衣本泽 1
1. 中原工学院信息与通信工程学院,河南 郑州 450007;2. 中原工学院校医院,河南 郑州 451191;3. 首都师范大学信息工程学 院,北京 100048;4. 河南科技大学第一附属医院儿科,河南 洛阳 471000
Author(s):
LI Bicao1 WANG Yan1 WANG Bei2 SHAO Zhuhong3 GUO Xuwei4 YI Benze1
1. School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China; 2. Infirmary, Zhongyuan University of Technology, Zhengzhou 451191, China; 3. Information Engineering College, Capital Normal University, Beijing 100048, China; 4. Department of Pediatrics, the First Affiliated Hospital of He’nan University of Science and Technology, Luoyang 471000, China
关键词:
可变形医学图像配准自相似性上下文混合注意力无监督深度学习
Keywords:
deformable medical image registration self-similarity context mixed attention unsupervised deep learning
分类号:
R318TP391
DOI:
10.3969/j.issn.1005-202X.2025.03.004
文献标志码:
A
摘要:
为了充分利用 Transformer 进行精确的配准,采用自相似性上下文作为特征提取器提取体素邻域上下文的语义信 息。它使用具有扩散正则化的对称多尺度离散优化来寻找平滑的变换,可以快速地计算描述符之间的逐点距离。此外, 提出一种基于混合注意力的 Transformer 网络(STWA),结合通道、空间注意力以及基于(移动)窗口的自注意力方案,充分 利用 3 种注意力机制的互补优势,既能利用全局统计信息,又具有强大的局部拟合能力。在 LPBA40、IXI 和 OASIS 3 个 3D 大脑 MRI 数据集上进行全面的实验,结果表明,与常用的配准方法 SyN、VoxelMorph、CycleMorph、ViT-V-Net 和 TransMorph 相比,本文方法在评估指标上实现优越的性能,证明模型在可变形医学图像配准中的有效性。
Abstract:
To fully exploit Transformer for accurate registration, self-similarity context is used as a feature extractor to extract the semantic information of the voxel neighborhood context, using symmetric multi-scale discrete optimization with diffusion regularization to find smooth transformations for quickly calculating the point-by-point distance between descriptors. In addition, a spatial-channel Transformer based on window attention network is proposed, which combines channel, spatial attention and self-attention scheme based on (moving) window, and makes full use of the complementary advantages of these 3 attention mechanisms, enabling the network to utilize global statistical information and have strong local fitting ability. The results of comprehensive experiments on 3D brain MRI datasets of LPBA40, IXI and OASIS shows that the proposed method is superior to the commonly used registration methods (SyN, VoxelMorph, CycleMorph, ViT-V-Net and TransMorph) on several evaluation indicators, proving its effectiveness in deformable medical image registration.

备注/Memo

备注/Memo:
【收稿日期】2024-08-22 【基金项目】国家自然科学基金(61901537);河南省高校科技创新人 才支持计划(23HASTIT030);中原工学院学科青年硕导 培育计划(SD202207);中原工学院研究生科研创新计划 (YKY2024ZK26) 【作者简介】李碧草,博士,副教授,硕士生导师,研究方向:人工智能 与医学图像处理,E-mail: lbc@zut.edu.cn
更新日期/Last Update: 2025-03-26