[1]方俊泽,邢素霞,郭正,等.基于沙漏阶梯残差模型的胸部影像多标签分类[J].中国医学物理学杂志,2025,42(3):360-368.[doi:10.3969/j.issn.1005-202X.2025.03.012]
 FANG Junze,XING Suxia,GUO Zheng,et al.Multi-label chest X-ray classification using sandglass ladder residual network[J].Chinese Journal of Medical Physics,2025,42(3):360-368.[doi:10.3969/j.issn.1005-202X.2025.03.012]
点击复制

基于沙漏阶梯残差模型的胸部影像多标签分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第3期
页码:
360-368
栏目:
医学影像物理
出版日期:
2025-03-20

文章信息/Info

Title:
Multi-label chest X-ray classification using sandglass ladder residual network
文章编号:
1005-202X(2025)03-0360-09
作者:
方俊泽邢素霞郭正李珂娴王瑜
北京工商大学人工智能学院,北京 100048
Author(s):
FANG Junze XING Suxia GUO Zheng LI Kexian WANG Yu
School of Artificial Intelligence, Beijng Technology and Business University, Beijng 100048, China
关键词:
胸部影像多标签分类卷积神经网络视觉转换器沙漏卷积
Keywords:
chest X-ray multi-label classification convolutional neural network vision transformer sandglass convolution
分类号:
R318TP391.41
DOI:
10.3969/j.issn.1005-202X.2025.03.012
文献标志码:
A
摘要:
提出一种基于沙漏阶梯残差模型(SLRN),用于胸部影像疾病的多标签分类,提高临床诊断的准确性。SLRN 的设 计包括 3 个关键模块,首先采用沙漏卷积模块同时提取通道间信息与空间信息;然后使用阶梯自注意力模块,通过移位操 作实现不同窗口划分,扩大感受野,提取并融合多尺度特征;在多标签分类阶段,使用多头残差注意力,捕捉到不同标签之 间的相关性和特征间的重要性,通过调整不同特征的权重实现更精准的分类。本研究在印第安纳大学收集的胸部 X 光数 据集(IU X-Ray)和美国国立卫生研究院收集并公开的胸部 X 射线数据集(Chest X-Ray14)中进行验证,实验证明 SLRN 结 合了卷积神经网络和视觉转换器的优点,可以捕捉影像中的局部特征和全局关联,更好地处理长距离依赖关系,辅助医生进行临床诊断。
Abstract:
A sandglass ladder residual network (SLRN) is proposed for multi-label chest X-ray classification, thereby improving the accuracy of clinical diagnosis. SLRN consists of 3 key modules: (1) a sandglass convolutional module to simultaneously extract inter-channel and spatial information; (2) a ladder self attention block to achieve different window divisions through shift operations, expand the receptive field, and realize multi-scale feature extraction and fusion; (3) class specific residual attention in the multi-label classification stage to capture the correlation between different labels and the importance of features for accomplishing more accurate classification by adjusting the weights of different features. The proposed model is validated using the IU X-Ray dataset collected by Indiana University and the publicly available Chest XRay14 dataset collected by the National Institutes of Health in the United States; and the results demonstrate that SLRN which combines the advantages of convolutional neural network and vision transformer enables the capture of local features and global correlations in images, better handles long-distance dependencies, and assists doctors in clinical diagnosis.

备注/Memo

备注/Memo:
【收稿日期】2024-12-11 【基金项目】北京市自然科学基金(KZ202110011015) 【作者简介】方俊泽,硕士研究生,研究方向:医学图像处理、深度学习, E-mail: 2605574541@qq.com 【通信作者】邢素霞,博士,副教授,研究方向:医学图像处理、信息融 合,E-mail: xingsuxia@163.com
更新日期/Last Update: 2025-03-26