[1]张颖,赵祺旸,郗群.基于深度融合网络研究糖尿病视网膜病变[J].中国医学物理学杂志,2025,42(3):347-355.[doi:10.3969/j.issn.1005-202X.2025.03.010]
 ZHANG Ying,ZHAO Qiyang,XI Qun.Diabetic retinopathy research based on deep converged network[J].Chinese Journal of Medical Physics,2025,42(3):347-355.[doi:10.3969/j.issn.1005-202X.2025.03.010]
点击复制

基于深度融合网络研究糖尿病视网膜病变()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第3期
页码:
347-355
栏目:
医学影像物理
出版日期:
2025-03-20

文章信息/Info

Title:
Diabetic retinopathy research based on deep converged network
文章编号:
1005-202X(2025)03-0347-09
作者:
张颖 1赵祺旸 1郗群 2
1. 甘肃中医药大学信息工程学院,甘肃 兰州 730000;2. 兰州大学第二医院信息中心,甘肃 兰州 730000
Author(s):
ZHANG Ying1 ZHAO Qiyang1 XI Qun2
1. School of Information Engineering, Gansu University of Chinese Medicine, Lanzhou 730000, China; 2. Information Center, Lanzhou University Second Hospital, Lanzhou 730000, China
关键词:
糖尿病视网膜病变深度学习深度残差收缩网络金字塔分割注意力模块
Keywords:
diabetic retinopathy deep learning deep residual shrinkage network pyramid split attention module
分类号:
R318R774.1
DOI:
10.3969/j.issn.1005-202X.2025.03.010
文献标志码:
A
摘要:
基于深度学习提出一种融合网络,旨在高效、准确地辅助诊断糖尿病性视网膜病。采用数据增强技术与生成对抗 网络相结合的手段,对 EyePACS 数据集内的眼底图像实施扩充操作,有效应对眼底图像分类不均衡的难题。使用 Inception-Resnet-V2 作为主网络,并融入深度残差收缩网络和金字塔分割注意力模块,有效地过滤掉特征学习过程中的 无关信息,聚焦病灶信息,提高网络对重要特征的抓取能力。实验结果显示该优化模型能在无需事先指明病变特征的情 况下,准确率、召回率、特异性、灵敏度以及 F1 分数达到 0.951、0.950、0.990、0.950、0.950,表明本文模型在评价指标上都有 较好的性能。
Abstract:
A converged network based on deep learning is proposed to realize the efficient and accurate diagnosis of diabetic retinopathy. Both data augmentation technology and generative adversarial network are used to augment the fundus images in EyePACS dataset for effectively addressing the problem of uneven classification of fundus images. The proposed model uses Inception-Resnet-V2 as the main network, and incorporates deep residual shrinkage network and pyramid split attention module for effectively filtering out the irrelevant information in the feature learning process and focusing on the lesion information, thereby improving the network’s ability to capture important features. Experimental results show that the optimized model achieves accuracy, recall, specificity, sensitivity, and F1 score of 0.951, 0.950, 0.990, 0.950, and 0.950, respectively, without the need to specify lesion characteristics in advance, demonstrating its superiority in evaluation indicators.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(3):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(3):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(3):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(3):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(3):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(3):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(3):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[11]蒋杰伟,雷舒陶,耿苗苗,等.融合可解释性特征的糖尿病视网膜病变自动诊断[J].中国医学物理学杂志,2022,39(5):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]
 JIANG Jiewei,LEI Shutao,GENG Miaomiao,et al.Automatic diagnosis of diabetic retinopathy based on interpretable features fusion[J].Chinese Journal of Medical Physics,2022,39(3):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]
[12]王文静,张莉钏,王欣,等.融合改进Retinex图像增强与深度学习的糖尿病视网膜分类检测方法[J].中国医学物理学杂志,2024,41(9):1086.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.005]
 WANG Wenjing,ZHANG Lichuan,WANG Xin,et al.Classification and detection method for diabetic retinopathy based on the combination of improved Retinex image enhancement and deep learning[J].Chinese Journal of Medical Physics,2024,41(3):1086.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.005]

备注/Memo

备注/Memo:
【收稿日期】2024-11-10 【基金项目】甘肃省自然科学基金(20CX9JA145);兰州市科技计划项 目(2023-4-36) 【作者简介】张颖,硕士研究生,研究方向:医学图像处理,E-mail: zhangying19981212@163.com 【通信作者】郗群,硕士生导师,正高级工程师,研究方向:医院信息化、 图像处理,E-mail: 28309495@qq.com
更新日期/Last Update: 2025-03-27