[1]朱中旗,高晓隆,李英豪,等.基于CA-SegResNet的CT图像标识椎骨自动分割[J].中国医学物理学杂志,2024,41(11):1349-1356.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.005]
 ZHU Zhongqi,GAO Xiaolong,LI Yinghao,et al.Automatic segmentation of identified vertebral bones from CT images using CA-SegResNet[J].Chinese Journal of Medical Physics,2024,41(11):1349-1356.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.005]
点击复制

基于CA-SegResNet的CT图像标识椎骨自动分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第11期
页码:
1349-1356
栏目:
医学影像物理
出版日期:
2024-11-26

文章信息/Info

Title:
Automatic segmentation of identified vertebral bones from CT images using CA-SegResNet
文章编号:
1005-202X(2024)11-1349-08
作者:
朱中旗1高晓隆2李英豪1杨光1郝利国3汪红志1
1.华东师范大学物理与电子科学学院上海市磁共振重点实验室, 上海 200062; 2.富锦市中医医院影像科, 黑龙江 富锦 156100; 3.齐齐哈尔医学院医学技术学院分子影像研究室, 黑龙江 齐齐哈尔 161006
Author(s):
ZHU Zhongqi1 GAO Xiaolong2 LI Yinghao1 YANG Guang1 HAO Liguo3 WANG Hongzhi1
1. Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China 2. Department of Imaging, Fujin Chinese Medicine Hospital, Fujin 156100, China 3. Laboratory of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
关键词:
深度学习计算机断层扫描椎骨分割分割网络坐标注意力
Keywords:
Keywords: deep learning computed tomography vertebral segmentation segmentation network coordinate attention
分类号:
R318;TP391.41
DOI:
DOI:10.3969/j.issn.1005-202X.2024.11.005
文献标志码:
A
摘要:
针对脊椎计算机断层扫描(CT)图像标识椎骨分割问题,提出一种融合三维坐标注意力机制的三维医学图像分割网络CA-SegResNet。该网络通过深度残差卷积神经网络提取图像特征,将编码器每层输出的特征图与解码器每层的输入相融合,然后引入三维坐标注意力模块捕获通道间关系以及方向和位置信息,建立起不同空间方向的长距离依赖关系,实现标识椎骨的精准分割。在对105个病例的颈椎标识椎骨(第7节颈椎)和胸椎标识椎骨(第12节胸椎)的分割任务中,CA-SegResNet在测试集上的分割平均Dice系数(DSC)分别为0.934 5和0.918 9,平均豪斯多夫距离(HD)为7和8 mm。与U-Net相比,平均DSC分别提高0.014 5和0.046 3,平均HD分别缩小176和388 mm。实验结果表明,该算法能够对CT图像标识脊椎进行精准分割。
Abstract:
Abstract: A three-dimensional (3D) medical image segmentation network (CA-SegResNet) which incorporates a 3D coordinate attention mechanism is proposed to address the issue of segmenting identified vertebral bones from spinal computed tomography (CT) images. The network extracts image features through a deep residual convolutional neural network and fuses the feature maps from each encoder layer with the input of the corresponding decoder layer. Subsequently, a 3D coordinate attention module is introduced to capture inter-channel relationships as well as directional and positional information, establishing long-range dependencies across different spatial directions, thereby enabling precise segmentation of the identified vertebral bones. For the segmentation tasks involving the identified cervical vertebra (the 7th cervical vertebra) and the identified thoracic vertebra (the 12th thoracic vertebra) across 105 cases, CA-SegResNet achieves average Dice similarity coefficients (DSC) of 0.934 5 and 0.918 9 on the test set, with average Hausdorff distances (HD) of 7 and 8 mm. Compared with U-Net results, the average DSC is improved by 0.014 5 and 0.046 3, while average HD is reduced by 176 and 388 mm. The results demonstrate that the network can realize the precise segmentation of identified vertebral bones from CT images.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(11):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]郭广威,莫贤海,陈炯,等. 低剂量与标准剂量CT对慢性鼻窦炎手术高风险患者图像质量和辐射剂量的影响[J].中国医学物理学杂志,2017,34(11):1137.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.011]
 GUO Guangwei,MO Xianhai,CHEN Jiong,et al. Evaluation of low-dose versus standard-dose CT examination in surgical high-risk patients with chronic rhinosinusitis[J].Chinese Journal of Medical Physics,2017,34(11):1137.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.011]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(11):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(11):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]齐泽瑶,王远军. 基于全变分模型的CT不完全角度重建算法研究进展[J].中国医学物理学杂志,2019,36(2):180.[doi:1005-202X(2019)02-0180-05]
 QI Zeyao,WANG Yuanjun. Research progress on limited-angle CT reconstruction algorithm based on total variation model[J].Chinese Journal of Medical Physics,2019,36(11):180.[doi:1005-202X(2019)02-0180-05]
[7]张巧莹,黄晓宇,梁小红,等. PACS系统三维测量方法与多田公式计算方法在脑出血测量的准确性比较[J].中国医学物理学杂志,2019,36(3):296.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.010]
 ZHANG Qiaoying,,et al. Comparison of accuracy between Picture Archiving and Communication Systems three-dimensional measuring method and Tada formula in intracerebral hemorrhage volume measurement[J].Chinese Journal of Medical Physics,2019,36(11):296.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.010]
[8]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[9]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(11):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[10]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]

备注/Memo

备注/Memo:
【收稿日期】2024-05-07 【基金项目】国家自然科学基金(61731009) 【作者简介】朱中旗,硕士研究生,研究方向:人工智能在医学影像中的应用,E-mail: arcmosin@163.com;高晓隆,硕士,主治医师,研究方向:医学影像诊断、医学影像AI技术,E-mail: 185977790@qq.com(朱中旗和高晓隆为共同第一作者) 【通信作者】郝利国,硕士,教授,研究方向:影像医学与核医学,E-mail: haoliguo@qmu.edu.cn;汪红志,博士,高级工程师,CCF会员,研究方向:医学影像设备与技术、医学影像人工智能技术,E-mail: hzwang@phy.ecnu.edu.cn
更新日期/Last Update: 2024-11-26