相似文献/References:
[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[J].Chinese Journal of Medical Physics,2017,34(11):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]郭广威,莫贤海,陈炯,等. 低剂量与标准剂量CT对慢性鼻窦炎手术高风险患者图像质量和辐射剂量的影响[J].中国医学物理学杂志,2017,34(11):1137.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.011]
GUO Guangwei,MO Xianhai,CHEN Jiong,et al. Evaluation of low-dose versus standard-dose CT examination in surgical high-risk patients with chronic rhinosinusitis[J].Chinese Journal of Medical Physics,2017,34(11):1137.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.011]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(11):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(11):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]齐泽瑶,王远军. 基于全变分模型的CT不完全角度重建算法研究进展[J].中国医学物理学杂志,2019,36(2):180.[doi:1005-202X(2019)02-0180-05]
QI Zeyao,WANG Yuanjun. Research progress on limited-angle CT reconstruction algorithm based on total variation model[J].Chinese Journal of Medical Physics,2019,36(11):180.[doi:1005-202X(2019)02-0180-05]
[7]张巧莹,黄晓宇,梁小红,等. PACS系统三维测量方法与多田公式计算方法在脑出血测量的准确性比较[J].中国医学物理学杂志,2019,36(3):296.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.010]
ZHANG Qiaoying,,et al. Comparison of accuracy between Picture Archiving and Communication Systems three-dimensional measuring method and Tada formula in intracerebral hemorrhage volume measurement[J].Chinese Journal of Medical Physics,2019,36(11):296.[doi:DOI:10.3969/j.issn.1005-202X.2019.03.010]
[8]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[9]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(11):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[10]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]