[1]黄仟甲,张恒,李奇轩,等.医学图像分割的研究进展[J].中国医学物理学杂志,2024,41(8):939-945.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.003]
 HUANG Qianjia,ZHANG Heng,,et al.Review on medical image segmentation methods[J].Chinese Journal of Medical Physics,2024,41(8):939-945.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.003]
点击复制

医学图像分割的研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第8期
页码:
939-945
栏目:
医学影像物理
出版日期:
2024-08-31

文章信息/Info

Title:
Review on medical image segmentation methods
文章编号:
1005-202X(2024)08-0939-07
作者:
黄仟甲1张恒2345李奇轩1曹德政2345焦竹青1倪昕晔2345
1.常州大学计算机与人工智能学院, 江苏 常州 213164; 2.南京医科大学附属常州第二人民医院放疗科, 江苏 常州 213003; 3.江苏省医学物理工程研究中心, 江苏 常州 213003; 4.南京医科大学医学物理研究中心, 江苏 常州 213003; 5.常州市医学物理重点实验室, 江苏 常州 213003
Author(s):
HUANG Qianjia1 ZHANG Heng2 3 4 5 LI Qixuan1 CAO Dezheng2 3 4 5 JIAO Zhuqing1 NI Xinye2 3 4 5
1. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China 2. Department of Radiotherapy, Changzhou Second Peoples Hospital, Nanjing Medical University, Changzhou 213003, China 3. Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China 4. Medical Physics Research Center, Nanjing Medical University, Changzhou 213003, China 5. Key Laboratory of Medical Physics in Changzhou, Changzhou 213003, China
关键词:
医学图像分割深度学习阈值分割神经网络任意分割模型综述
Keywords:
Keywords: medical image segmentation deep learning threshold segmentation neural network segment anything model review
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2024.08.003
文献标志码:
A
摘要:
医学图像是医生对患者进行病情诊断和治疗规划的有力工具。现今对于医学图像的分割不再局限于手工分割方法,通过传统方法与深度学习方法来实现医学图像分割已经取得更好、更准确的结果。本文基于近年来一些较为出众的医学图像创新分割方法进行综述,通过阐述深度学习方法如SAM、SegNet、Mask R-CNN和U-NET以及传统方法如活动轮廓模型、阈值分割模型创新等,对比各种图像分割方法的异同点,对医学图像分割方法做出总结与展望。以此来帮助学者们更好地了解目前的研究进展与未来的发展趋势。
Abstract:
Abstract: Medical image is a powerful tool to assist doctors in the diagnosis and treatment planning. Nowadays, the segmentation of medical images is no longer limited to manual segmentation methods. Traditional methods and deep learning methods have been used to achieve more accurate results in medical image segmentation. Herein some innovative medical image segmentation methods in recent years are reviewed. By elaborating on the innovations of deep learning methods (SAM, SegNet, Mask R-CNN, and U-NET) and traditional methods (active contour model and threshold segmentation model), the differences and similarities between them are compared. The summary of medical image segmentation methods and the prospect is expected to help researchers better grasp and familiarize themselves with research status and development trend.

相似文献/References:

[1]万俊,聂生东,王远军,等.基于MRI的脑肿瘤分割技术研究进展[J].中国医学物理学杂志,2013,30(04):4266.[doi:10.3969/j.issn.1005-202X.2013.04.013]
[2]林江,戴齐,欧阳婷雪,等.一种边界和马尔可夫随机场相结合的脑MRI医学图像分割方法[J].中国医学物理学杂志,2015,32(05):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
 [J].Chinese Journal of Medical Physics,2015,32(8):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
[3]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(8):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[4]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(8):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[5]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(8):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[6]吴迪,胡胜,刘伟峰,等. 基于特征融合视觉显著性的医学图像分割[J].中国医学物理学杂志,2018,35(6):670.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
 WU Di,HU Sheng,LIU Weifeng,et al. Medical image segmentation based on visual saliency of feature fusion[J].Chinese Journal of Medical Physics,2018,35(8):670.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
[7]刘国才,官文静,田娟秀,等. 集成自适应回归核的肿瘤生物靶区随机游走勾画方法[J].中国医学物理学杂志,2018,35(7):758.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.004]
 LIU Guocai,GUAN Wenjing,TIAN Juanxiu,et al. A random walk method with adaptive regression-kernel for delineation of biological target volumes of tumors[J].Chinese Journal of Medical Physics,2018,35(8):758.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.004]
[8]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(8):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[9]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(8):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[10]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[11]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[12]张富利,杨安宁,路娜,等.基于FC_DenseNet深度学习网络自动分割肺癌放疗中的危及器官[J].中国医学物理学杂志,2021,38(2):259.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.024]
 ZHANG Fuli,YANG Anning,LU Na,et al.FC_Densenet-based autosegmentation of organs-at-risk in lung cancer radiotherapy[J].Chinese Journal of Medical Physics,2021,38(8):259.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.024]
[13]方新林,方艳红,王迪.基于多模态特征融合的脑瘤图像分割方法[J].中国医学物理学杂志,2022,39(6):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
 FANG Xinlin,FANG Yanhong,WANG Di.Brain tumor image segmentation method based on multi-modal feature fusion[J].Chinese Journal of Medical Physics,2022,39(8):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
[14]周金治,胡震,郭莉莉,等.基于GAN-DAUnet的肝脏CT图像肿瘤分割算法[J].中国医学物理学杂志,2023,40(8):971.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.008]
 ZHOU Jinzhi,HU Zhen,et al.Liver CT image tumor segmentation algorithm based on GAN-DAUnet[J].Chinese Journal of Medical Physics,2023,40(8):971.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.008]

备注/Memo

备注/Memo:
【收稿日期】2024-03-15 【基金项目】国家自然科学基金(62371243);江苏省医学重点学科建设单位[肿瘤治疗学(放射治疗)](JSDW202237);江苏省重点研发计划社会发展项目(BE2022720);江苏省卫健委面上项目(M2020006);江苏省自然科学基金(BK20231190);常州市社会发展项目(CE20235063) 【作者简介】黄仟甲,硕士研究生,主要研究方向:医学图像分割,E-mail: 424541674@qq.com 【通信作者】倪昕晔,博士,研究员,博士生导师,主要研究方向:医学物理,E-mail: nxy@njmu.edu.cn
更新日期/Last Update: 2024-08-31