[1]乐振,孙振,鞠瑞文,等.基于YOLOv8s的改进结核病病原体检测算法[J].中国医学物理学杂志,2024,41(7):910-917.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.019]
 YUE Zhen,SUN Zhen,JU Ruiwen,et al.A novel tuberculosis pathogens detection algorithm based on YOLOv8s[J].Chinese Journal of Medical Physics,2024,41(7):910-917.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.019]
点击复制

基于YOLOv8s的改进结核病病原体检测算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第7期
页码:
910-917
栏目:
医学人工智能
出版日期:
2024-07-25

文章信息/Info

Title:
A novel tuberculosis pathogens detection algorithm based on YOLOv8s
文章编号:
1005-202X(2024)07-0910-08
作者:
乐振1孙振2鞠瑞文2李庆党3
1.青岛科技大学信息科学技术学院, 山东 青岛 266061; 2.青岛科技大学数据科学学院, 山东 青岛 266061; 3.青岛科技大学中德科技学院, 山东 青岛 266061
Author(s):
YUE Zhen1 SUN Zhen2 JU Ruiwen2 LI Qingdang3
1. School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China 2. School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China 3. College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
关键词:
结核病深度学习YOLOv8注意力机制
Keywords:
Keywords: tuberculosis deep learning YOLOv8 attention mechanism
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2024.07.019
文献标志码:
A
摘要:
针对结核病病原体在痰涂片图像背景复杂且目标小,人工筛查成本较高的问题,提出了一种基于YOLOv8s的结核病病原体检测方法。首先,采用基于空间和通道重构卷积改进的结构来限制特征冗余。其次,引入了坐标注意力来扩大模型的感受野。再者,使用空间金字塔池化跨阶段局部网络来提取不同尺度上的特征信息。最后,嵌入基于归一化的注意力机制抑制不太显著的特征。实验结果表明,在公开数据集上,改进网络模型与原YOLOv8s模型相比,精确率和召回率分别提升2.7%和1.5%,置信度为0.5时的平均精度均值提高了2.3%,该模型能够有效辅助影像科医师进行诊断。
Abstract:
Abstract:To address the challenges of detecting tuberculosis pathogens in sputum smear images, such as complex backgrounds, small targets, and high costs of manual screening, a detection method based on YOLOv8s is presented. The structure is improved through spatial and channel reconstruction convolutions to limit feature redundancy, and a coordinate attention is introduced to expand the receptive field of the model. Furthermore, a spatial pyramid pooling cross-stage partial network is used to extract feature information at different scales, and a normalized attention mechanism is embedded to suppress less significant features. The experimental results on a public dataset show that compared with the original YOLOv8s model, the improved network model enhances precision and recall rates by 2.7% and 1.5%, respectively, and improved mean average precision at a confidence level of 0.5 by 2.3%, demonstrating that the improved model can effectively assist radiologists in diagnosis.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(7):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(7):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(7):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(7):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(7):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(7):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(7):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(7):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(7):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(7):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2024-03-10 【基金项目】山东省泰山学者项目(tshw201502042) 【作者简介】乐振,硕士研究生,研究方向:医学图像处理,E-mail: yzhelloworld@163.com 【通信作者】李庆党,教授,研究方向:人工智能及大数据技术,E-mail: lqd@qust.edu.cn
更新日期/Last Update: 2024-07-13