[1]刘卫朋,李健,祁业东,等.基于坐标信息与多尺度并行网络的气道分割方法[J].中国医学物理学杂志,2024,41(10):1216-1224.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.005]
 LIU Weipeng,,et al.Airway segmentation method based on coordinate information and multi-scale parallel network[J].Chinese Journal of Medical Physics,2024,41(10):1216-1224.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.005]
点击复制

基于坐标信息与多尺度并行网络的气道分割方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第10期
页码:
1216-1224
栏目:
医学影像物理
出版日期:
2024-10-25

文章信息/Info

Title:
Airway segmentation method based on coordinate information and multi-scale parallel network
文章编号:
1005-202X(2024)10-1216-09
作者:
刘卫朋123李健12祁业东23任子文23王源23
1.河北工业大学生命科学与健康工程学院, 天津 300401; 2.省部共建电工设备可靠性与智能化国家重点实验室, 天津 300401; 3.河北工业大学人工智能与数据科学学院, 天津 300401
Author(s):
LIU Weipeng1 2 3 LI Jian1 2 QI Yedong2 3 REN Ziwen2 3 WANG Yuan2 3
1. School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China 2. State Key Lab of Reliability and Intelligence of Electrical Equipment, Tianjin 300401, China 3. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
关键词:
气道分割坐标信息多尺度特征聚合并行网络
Keywords:
Keywords: airway segmentation coordinate information multi-scale feature aggregation parallel network
分类号:
R318;TP391.4
DOI:
DOI:10.3969/j.issn.1005-202X.2024.10.005
文献标志码:
A
摘要:
为解决手术导航中气道模型精度不足的问题,提出了一种基于坐标信息与多尺度并行网络的气道分割方法。首先通过并行网络分别学习不同尺度的气道特征,以解决不同尺寸气道之间的特征冲突问题。其次提出坐标引导的上采样模块,通过浅层特征中的坐标信息指导深层特征进行特征重建,限制目标的空间位置,提高模型精度。最后提出通道引导的多尺度特征聚合模块,用于在多个尺度上捕获语义信息并探索不同尺度特征之间的通道关系。在公开数据集LIDC-IDRI和EXACT09上对提出的方法和其他模型进行训练和测试。实验表明,该方法的平均骰子系数达到了93.20%,相比于3D U-Net提高了2.61%,而假阳性率只有0.012%。此外,树长检测率和分支检测率分别达到了88.59%和97.42%。该方法可用于肺部疾病诊断或导航支气管检查等领域。
Abstract:
Abstract: An airway segmentation method based on coordinate information and multi-scale parallel network is proposed to solve the problem of insufficient accuracy of airway model in surgical navigation. Airway features at different scales are learned separately by a parallel network to address the feature conflict arising from airways of different sizes. Then, a coordinate guided up-sampling module is designed to utilize coordinate information from shallow features for guiding reconstruction of deeper features, thus restricting the spatial location of the target and improving the model accuracy. Finally, a channel guided multi-scale feature aggregation module is constructed to capture semantic details across multiple scales and investigate channel relationships between features at different scales. The proposed method and other models are trained and tested on two public datasets, namely LIDC-IDRI and EXACT09. Experimental results show that the proposed method achieves an average Dice coefficient of 93.20% which is 2.61% higher than 3D U-Net, a false positive rate of only 0.012%, a tree length detection rate of 88.59%, and a branch detection rate of 97.42%, demonstrating that the method can be applied to lung disease diagnosis or navigation bronchoscopy.

备注/Memo

备注/Memo:
【收稿日期】2024-03-18 【基金项目】国家重点研发计划(2020YFB1313703);国家重大科研仪器研制项目(62027813);河北省重点研发计划(21372003D);河北省自然科学基金(F2022202054, F2022202064) 【作者简介】刘卫朋,博士,研究员,研究方向:医学图像处理、手术机器人控制,E-mail: liuweipeng@hebut.edu.cn
更新日期/Last Update: 2024-10-29