相似文献/References:
[1]蒋杰伟,雷舒陶,耿苗苗,等.融合可解释性特征的糖尿病视网膜病变自动诊断[J].中国医学物理学杂志,2022,39(5):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]
JIANG Jiewei,LEI Shutao,GENG Miaomiao,et al.Automatic diagnosis of diabetic retinopathy based on interpretable features fusion[J].Chinese Journal of Medical Physics,2022,39(8):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]
[2]申思源,罗冬梅.糖尿病视网膜病变的风险揭示与关键因素分析[J].中国医学物理学杂志,2022,39(6):783.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.021]
SHEN Siyuan,LUO Dongmei.Risk disclosure and key factors analysis of diabetic retinopathy[J].Chinese Journal of Medical Physics,2022,39(8):783.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.021]
[3]杨东旭,赵红东,耿立新,等.双线性非局部特征结合中继监督网络用于视网膜血管分割[J].中国医学物理学杂志,2022,39(12):1516.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.010]
YANG Dongxu,ZHAO Hongdong,GENG Lixin,et al.Bilinear non-local features combined with intermediate supervision network for retinal vessel segmentation[J].Chinese Journal of Medical Physics,2022,39(8):1516.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.010]
[4]曹佳悦,罗冬梅.基于Null Importance与GS-LGBM的糖尿病视网膜病变因素分析与风险预测[J].中国医学物理学杂志,2023,40(8):1033.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.018]
CAO Jiayue,LUO Dongmei.Risk factors analysis and prediction of diabetic retinopathy based on Null Importance and GS-LGBM[J].Chinese Journal of Medical Physics,2023,40(8):1033.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.018]
[5]王文静,张莉钏,王欣,等.融合改进Retinex图像增强与深度学习的糖尿病视网膜分类检测方法[J].中国医学物理学杂志,2024,41(9):1086.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.005]
WANG Wenjing,ZHANG Lichuan,WANG Xin,et al.Classification and detection method for diabetic retinopathy based on the combination of improved Retinex image enhancement and deep learning[J].Chinese Journal of Medical Physics,2024,41(8):1086.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.005]