[1]米吾尔依提·海拉提,热娜古丽·艾合麦提尼亚孜,李莉,等.基于改进DeepLabV3+的囊型肝包虫病超声图像分割算法[J].中国医学物理学杂志,2024,41(6):702-709.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.007]
 HAILATI Miwueryiti,AIHEMAITINIYAZI Renaguli,LI Li,et al.Ultrasound image segmentation algorithm for hepatic cystic echinococcosis based on improved DeepLabV3+[J].Chinese Journal of Medical Physics,2024,41(6):702-709.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.007]
点击复制

基于改进DeepLabV3+的囊型肝包虫病超声图像分割算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第6期
页码:
702-709
栏目:
医学影像物理
出版日期:
2024-06-25

文章信息/Info

Title:
Ultrasound image segmentation algorithm for hepatic cystic echinococcosis based on improved DeepLabV3+
文章编号:
1005-202X(2024)06-0702-08
作者:
米吾尔依提·海拉提1热娜古丽·艾合麦提尼亚孜1李莉2严传波2
1.新疆医科大学公共卫生学院, 新疆 乌鲁木齐 830011; 2.新疆医科大学医学工程技术学院, 新疆 乌鲁木齐 830011
Author(s):
HAILATI Miwueryiti1 AIHEMAITINIYAZI Renaguli1 LI Li2 YAN Chuanbo2
1. School of Public Health, Xinjiang Medical University, Urumqi 830011, China 2. School of Medical Engineering Technology, Xinjiang Medical University, Urumqi 830011, China
关键词:
囊型肝包虫病深度学习DeepLabV3+MobileNetV2高效通道注意力
Keywords:
Keywords: hepatic cystic echinococcosis deep learning DeepLabV3+ MobileNetV2 efficient channel attention
分类号:
R316;R445.1
DOI:
DOI:10.3969/j.issn.1005-202X.2024.06.007
文献标志码:
A
摘要:
目的:将基于改进DeepLabV3+的图像语义分割算法应用到囊型肝包虫病超声图像处理中,实现肝包虫病病灶的自动分割与检测,提高临床诊断效率。方法:本研究采用了DeepLabV3+图像语义分割网络为基础方法,并对其进行了以下改进。首先,为解决DeepLabV3+图像语义分割方法计算复杂度高,内存消耗大,难以在计算能力有限的嵌入式平台上部署,在提取图像特征信息时难以充分利用多尺度信息等问题,以MobileNetV2替换模型的原主干网络Xception,获得轻量级的模型框架。其次,将高效通道注意力应用于底层特征,降低计算复杂度,提高目标边界的清晰度。最后,将Dice Loss引入模型中,缓解模型更关注背景区域,而忽略了包含目标的前景区域等问题。结果:在自建囊型肝包虫病VOC2007数据集5种病灶类型上进行验证,实验结果表明,改进模型的平均交并比和平均像素精度分别达到73.8%和83.5%,能够预测更精细的语义分割结果,有效地优化模型复杂度和分割精度。
Abstract:
Abstract: Objective To apply the improved DeepLabV3+ based image semantic segmentation algorithm to the ultrasound image processing for hepatic cystic echinococcosis, thereby achieving automatic segmentation and detection of hepatic echinococcosis lesions, and improving clinical diagnostic efficiency. Methods DeepLabV3+ based image semantic segmentation network was employed as the basic method, and the following improvements were made. To address the issues of high computational complexity, high memory consumption, difficulty in deploying on embedded platforms with limited computing power, and difficulty in fully utilizing multi-scale information when extracting image feature information, the original backbone network Xception of the model was replaced with MobileNetV2 for obtaining a lightweight model framework. Additionally, efficient channel attention was applied to underlying features for reducing computational complexity and improving the clarity of target boundaries and finally, Dice Loss was introduced into the model to alleviate the problem of the model focusing more on the background area and ignoring the foreground area containing the target. Results Validation was conducted on 5 lesion types in the self-built VOC2007 dataset of hepatic cystic echinococcosis. Experimental results showed that the improved model achieved a mean intersection over union of 73.8 and a mean pixel accuracy of 83.5, indicating that the model can predict more precise semantic segmentation results and effectively optimize model complexity and segmentation accuracy.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(6):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(6):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(6):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(6):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(6):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(6):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(6):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(6):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(6):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2024-01-26 【基金项目】国家自然科学基金(81560294) 【作者简介】米吾尔依提·海拉提,硕士研究生,研究方向:医学图像处理,E-mail: 2654458414@qq.com 【通信作者】严传波,硕士,研究方向:医学图像处理,E-mail: ycbsky@126.com
更新日期/Last Update: 2024-06-25