[1]时承,姚旭峰.机器学习用于帕金森病诊断的研究进展[J].中国医学物理学杂志,2024,41(5):640-645.[doi:DOI:10.3969/j.issn.1005-202X.2024.05.016]
 SHI Cheng,YAO Xufeng.Advances in machine learning for the diagnosis of Pakinsons disease[J].Chinese Journal of Medical Physics,2024,41(5):640-645.[doi:DOI:10.3969/j.issn.1005-202X.2024.05.016]
点击复制

机器学习用于帕金森病诊断的研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第5期
页码:
640-645
栏目:
医学人工智能
出版日期:
2024-05-23

文章信息/Info

Title:
Advances in machine learning for the diagnosis of Pakinsons disease
文章编号:
1005-202X(2024)05-0640-06
作者:
时承12姚旭峰2
1.上海理工大学健康科学与工程学院, 上海 200093; 2.上海健康医学院医学影像学院, 上海 201318
Author(s):
SHI Cheng1 2 YAO Xufeng2
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
关键词:
帕金森病机器学习智能诊断综述
Keywords:
Parkinsons disease machine learning intelligent diagnosis review
分类号:
R318;R742.5
DOI:
DOI:10.3969/j.issn.1005-202X.2024.05.016
文献标志码:
A
摘要:
帕金森病(PD)是仅次于阿尔茨海默病的第二大神经退行性疾病,早期的诊断和干预对患者至关重要。本文聚焦于机器学习对于PD的智能诊断,介绍了在PD诊断中的常见机器学习算法,重点介绍了卷积神经网络和长短期记忆网络。此外,文章还详细介绍了其在医学图像分析和运动行为分析中的应用,通过比较国内外的相关研究,分析了使用不同的影像学和运动学数据进行PD诊断的优缺点,最后对机器学习用于PD诊断进行了总结与展望。
Abstract:
Parkinsons disease (PD) is the second most common neurodegenerative disease after Alzheimers disease, and the early diagnosis and intervention are crucial for patients. The review focuses on machine learning for intelligent diagnosis of PD. The common machine learning algorithms in PD diagnosis, specifically convolutional neural networks and long short-term memory networks, are introduced, and their applications in medical image analysis and motor behavior analysis are discussed in details. By comparing relevant domestic and international researches, the advantages and disadvantages of using different imaging and kinematic data for PD diagnosis are analyzed. Finally, the review summarizes and presents a prospect for the application of machine learning in PD diagnosis.

相似文献/References:

[1]王美娇,李莎,岳海振,等. Model Analytics辅助的智能放疗计划建模[J].中国医学物理学杂志,2017,34(9):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
 [J].Chinese Journal of Medical Physics,2017,34(5):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
[2]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(5):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[3]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(5):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
[4]刘渊,程玉玉,贺睿敏,等.基于机器学习的鼻咽癌转移淋巴结鉴别模型[J].中国医学物理学杂志,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
 LIU Yuan,CHENG Yuyu,HE Ruimin,et al.Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(5):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
[5]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(5):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[6]雷炳业,潘嘉瑜,吴逢春,等.基于机器学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
 LEI Bingye,PAN Jiayu,et al.Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J].Chinese Journal of Medical Physics,2020,37(5):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
[7]李彩,范炤.基于机器学习的阿尔兹海默症分类预测[J].中国医学物理学杂志,2020,37(3):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
 LI Cai,FAN Zhao.Classification and prediction of Alzheimer’s disease based on machine learning[J].Chinese Journal of Medical Physics,2020,37(5):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
[8]闫凤,牛振洋,费振乐,等.机器学习在肺癌VMAT计划中对危及器官剂量预测的可行性[J].中国医学物理学杂志,2020,37(7):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
 YAN Feng,NIU Zhenyang,FEI Zhenle,et al.Feasibility of machine learning in OAR dosimetric prediction in VMAT plan for lung cancer[J].Chinese Journal of Medical Physics,2020,37(5):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
[9]黄仕雄,杨松华,王亮,等.基于预测剂量引导的宫颈癌自动计划研究[J].中国医学物理学杂志,2020,37(9):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
 HUANG Shixiong,YANG Songhua,WANG Liang,et al.Automatic planning of radiotherapy for cervical carcinoma based on dose prediction[J].Chinese Journal of Medical Physics,2020,37(5):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
[10]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(5):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]

备注/Memo

备注/Memo:
【收稿日期】2023-11-09 【基金项目】国家重点研发计划(2020YFC2008700);国家自然科学基金(61971275,81830052);上海市科学技术委员会地方院校能力建设项目(23010502700)。 【作者简介】时承,硕士研究生,主要研究方向:图像处理,E-mail: 223332549@st.usst.edu.cn 【通信作者】姚旭峰,教授,博士生导师,主要研究方向为医学影像处理、影像基因组学、人工智能,E-mail: yao6636329@hotmail.com
更新日期/Last Update: 2024-05-24