相似文献/References:
[1]吴迪,胡胜,刘伟峰,等. 基于特征融合视觉显著性的医学图像分割[J].中国医学物理学杂志,2018,35(6):670.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
WU Di,HU Sheng,LIU Weifeng,et al. Medical image segmentation based on visual saliency of feature fusion[J].Chinese Journal of Medical Physics,2018,35(3):670.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
[2]姜月,邹任玲. 基于多特征融合的运动想象脑电信号识别研究[J].中国医学物理学杂志,2019,36(5):590.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.019]
JIANG Yue,ZOU Renling. Recognition of motor imagery EEG signals based on multi-feature fusion[J].Chinese Journal of Medical Physics,2019,36(3):590.[doi:DOI:10.3969/j.issn.1005-202X.2019.05.019]
[3]付常洋,王瑜,肖洪兵,等.基于多尺度功能脑网络融合特征的抑郁症分类算法[J].中国医学物理学杂志,2020,37(4):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
FU Changyang,WANG Yu,XIAO Hongbing,et al.Classification of depression using fusion features based on multi-scale functional brain network[J].Chinese Journal of Medical Physics,2020,37(3):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
[4]李雪,周金治,莫春梅,等.基于特征融合的U-Net肺自动分割方法[J].中国医学物理学杂志,2021,38(6):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
LI Xue,ZHOU Jinzhi,et al.U-Net automatic lung segmentation based on feature fusion[J].Chinese Journal of Medical Physics,2021,38(3):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
[5]潘子妍,邢素霞,逄键梁,等.基于多特征融合与XGBoost的肺结节检测[J].中国医学物理学杂志,2021,38(11):1371.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.010]
PAN Ziyan,XING Suxia,PANG Jianliang,et al.Lung nodule detection based on multi-feature fusion and XGBoost[J].Chinese Journal of Medical Physics,2021,38(3):1371.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.010]
[6]李红利,丁满,张荣华,等.基于特征融合神经网络的运动想象脑电分类算法[J].中国医学物理学杂志,2022,39(1):69.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.012]
LI?ongli,ING Man,HANG?onghua,et al.Motor imagery EEG classification algorithm based on feature fusion neural network[J].Chinese Journal of Medical Physics,2022,39(3):69.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.012]
[7]罗刚,王铭勋,黎明,等.面向情绪脑电分析的增强型功率谱密度特征提取方法[J].中国医学物理学杂志,2022,39(3):349.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.015]
LUO Gang,WANG Mingxun,LI Ming,et al.Feature extraction method based on enhanced power spectral density for emotion analysis using EEG[J].Chinese Journal of Medical Physics,2022,39(3):349.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.015]
[8]方新林,方艳红,王迪.基于多模态特征融合的脑瘤图像分割方法[J].中国医学物理学杂志,2022,39(6):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
FANG Xinlin,FANG Yanhong,WANG Di.Brain tumor image segmentation method based on multi-modal feature fusion[J].Chinese Journal of Medical Physics,2022,39(3):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
[9]王京华,袁金丽,郭志涛,等.改进的YOLOv4算法在肺结核检测中的应用研究[J].中国医学物理学杂志,2023,40(1):113.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.019]
WANG Jinghua,YUAN Jinli,GUO Zhitao,et al.Application of improved YOLOv4 algorithm in the detection of pulmonary tuberculosis[J].Chinese Journal of Medical Physics,2023,40(3):113.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.019]
[10]洪启帆,玄祖兴,李雅馨.基于全卷积神经网络的低剂量CT去噪算法[J].中国医学物理学杂志,2023,40(6):695.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.005]
HONG Qifan,XUAN Zuxing,LI Yaxin.Fully convolutional neural network based algorithm for low-dose CT image denoising[J].Chinese Journal of Medical Physics,2023,40(3):695.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.005]