[1]牛树国,周福兴,颜克松,等.不同CT阈值下实性成分占比对小肺癌浸润性预测的影响[J].中国医学物理学杂志,2024,41(3):323-326.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
 NIU Shuguo,ZHOU Fuxing,YAN Kesong,et al.Predictive value of consolidation/tumor ratio at different CT thresholds for invasiveness in small lung cancer[J].Chinese Journal of Medical Physics,2024,41(3):323-326.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
点击复制

不同CT阈值下实性成分占比对小肺癌浸润性预测的影响()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第3期
页码:
323-326
栏目:
医学影像物理
出版日期:
2024-03-27

文章信息/Info

Title:
Predictive value of consolidation/tumor ratio at different CT thresholds for invasiveness in small lung cancer
文章编号:
1005-202X(2024)03-0323-04
作者:
牛树国1周福兴1颜克松2赵润生1刘彬彬3柴文晓2
1.武威市中医医院放射科, 甘肃 武威 733000; 2.甘肃省人民医院肿瘤介入科, 甘肃 兰州 730000; 3.武威市中医医院病理科, 甘肃 武威 733000
Author(s):
NIU Shuguo1 ZHOU Fuxing1 YAN Kesong2 ZHAO Runsheng1 LIU Binbin3 CHAI Wenxiao2
1. Department of Radiology, Wuwei Hospital of Traditional Chinese Medicine, Wuwei 733000, China 2. Department of Tumor Intervention, Gansu Provincial Hospital, Lanzhou 730000, China 3. Department of Pathology, Wuwei Hospital of Traditional Chinese Medicine, Wuwei 733000, China
关键词:
肺结节肺癌CT阈值实性成分占比人工智能
Keywords:
Keywords: lung nodule lung cancer CT threshold consolidation/tumor ratio artificial intelligence
分类号:
R734.2;R816.4
DOI:
DOI:10.3969/j.issn.1005-202X.2024.03.009
文献标志码:
A
摘要:
目的:利用人工智能辅助测量,比较在不同CT阈值下测得的肿瘤实性成分占比(CTR)对≤2 cm小肺癌浸润性预测的准确率,探讨预测肺癌浸润性的CTR阈值及对应的CT阈值。方法:收集2021年1月至2023年5月武威市中医医院就诊的59例肺癌患者(共78个肺结节)的临床资料,分析在CT阈值分别为-400、-350、-300、-250、-200、-150 HU时测得的CTR对直径≤2 cm小肺癌浸润性的预测效能,绘制ROC曲线判断预测浸润性的最佳临界值,以确定相应的CT阈值。结果:CT阈值为-250 HU时,对肺结节浸润性的诊断效能最高,曲线下面积为0.931,灵敏度为77.5%,特异度为100%,最佳CTR阈值为0.322。结论:对于最大径≤2 cm的小肺癌,当CT阈值为-250 HU时测得的CTR可较准确地预测肺癌的浸润性,当CTR>0.322时结节为微浸润腺癌或浸润性腺癌可能性较大。
Abstract:
Abstract: Objective To compare the accuracy of consolidation/tumor ratio (CTR) measured at different CT thresholds for the prediction of invasiveness in small lung cancer with diameter ≤ 2 cm using artificial intelligence-assisted measurements, and to explore the CTR thresholds and the corresponding CT thresholds for predicting lung cancer invasiveness. Methods Clinical data from 59 lung cancer patients (78 lung nodules in total) treated at Wuwei Hospital of Traditional Chinese Medicine from January 2021 to May 2023 were collected to analyze the prediction efficacy of CTR on invasiveness in small lung cancer with diameter ≤ 2 cm measured at CT thresholds of -400, -350, -300, -250, -200, -150 HU. ROC curves were plotted to determine the optimal critical value for invasiveness prediction, followed by the corresponding CT threshold. Results The highest diagnostic efficacy for the invasiveness of lung nodules was achieved at a CT threshold of -250 HU, with an area under the curve of 0.931, sensitivity of 77.5%, specificity of 100%, and an optimal CTR threshold of 0.322. Conclusion For small lung cancers with a maximum diameter ≤ 2 cm, CTR measured at a CT threshold of -250 HU can accurately predict lung cancer invasiveness. At CTR > 0.322, the nodule is more likely to be microinvasive or invasive adenocarcinoma.

相似文献/References:

[1]史贵连,叶福丽.肺癌调强放疗计划的设计[J].中国医学物理学杂志,2015,32(03):361.[doi:10.3969/j.issn.1005-202X.2015.03.013]
[2]朱夫海,吴伟章,王 勇,等.肺癌螺旋断层放疗计划设计的初步研究[J].中国医学物理学杂志,2014,31(04):4979.[doi:10.3969/j.issn.1005-202X.2014.04.002]
[3]翁邓胡,王 建,尹中明,等.基于锥形束CT研究肺癌图像引导放疗的内靶区外放边界值[J].中国医学物理学杂志,2014,31(04):5012.[doi:10.3969/j.issn.1005-202X.2014.04.009]
[4]彭莹莹,张书旭,谭剑明,等.基于PCNN的PET/CT图像分割在肺癌靶区勾画中的应用[J].中国医学物理学杂志,2014,31(04):5022.[doi:10.3969/j.issn.1005-202X.2014.04.011]
[5]王 涛,王运来.基于4D-CT和Mimics软件模拟分析肺癌肿瘤的呼吸运动规律[J].中国医学物理学杂志,2014,31(05):5132.[doi:10.3969/j.issn.1005-202X.2014.05.008]
[6]周 琼,周剑良,张一戈,等.基于锥形束CT肺癌放射治疗两种体位固定技术摆位误差的研究[J].中国医学物理学杂志,2014,31(06):5258.[doi:10.3969/j.issn.1005-202X.2014.06.008]
[7]张矛,金海国,苏清秀,等.肺癌静态调强与容积旋转调强放射治疗间比较[J].中国医学物理学杂志,2013,30(05):4364.[doi:10.3969/j.issn.1005-202X.2013.05.006]
[8]罗焕丽,靳富,王颖,等.肿瘤放疗中体外误差与体内误差的关联性[J].中国医学物理学杂志,2016,33(1):10.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.003]
 [J].Chinese Journal of Medical Physics,2016,33(3):10.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.003]
[9]王琳婧,张书旭,袁克虹,等.基于图像变形配准的肺癌自适应放疗剂量学研究[J].中国医学物理学杂志,2016,33(1):16.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.004]
 [J].Chinese Journal of Medical Physics,2016,33(3):16.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.004]
[10]李政良,等.4DCT下肺癌大体肿瘤的变化及相关因素分析[J].中国医学物理学杂志,2016,33(2):208.[doi:10.3969/j.issn.1005-202X.2016.02.021]
[11]王新宇,赵静文,刘翔,等.人工智能在肺结节筛查和肺癌诊断中的应用[J].中国医学物理学杂志,2023,40(9):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
 WANG Xinyu,ZHAO Jingwen,LIU Xiang,et al.Applications of artificial intelligence in lung nodule detection and lung cancer diagnosis[J].Chinese Journal of Medical Physics,2023,40(3):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]

备注/Memo

备注/Memo:
【收稿日期】2023-11-03 【基金项目】甘肃省自然科学基金(22JR5RA687);武威市科技计划项目(WW2101168) 【作者简介】牛树国,硕士,主治医师,研究方向:影像诊断与介入治疗,E-mail: nsg90230@163.com 【通信作者】柴文晓,硕士,主任医师,研究方向:肿瘤介入治疗,E-mail: chaiwenxiao@126.com
更新日期/Last Update: 2024-03-27