[1]任秀芳,罗捷.基于图论的精神分裂症患者静息态功能脑网络分析[J].中国医学物理学杂志,2024,41(7):821-827.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.006]
 REN Xiufang,LUO Jie.Analysis of resting-state functional brain network in schizophrenia patients based on graph theory[J].Chinese Journal of Medical Physics,2024,41(7):821-827.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.006]
点击复制

基于图论的精神分裂症患者静息态功能脑网络分析()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第7期
页码:
821-827
栏目:
医学影像物理
出版日期:
2024-07-25

文章信息/Info

Title:
Analysis of resting-state functional brain network in schizophrenia patients based on graph theory
文章编号:
1005-202X(2024)07-0821-07
作者:
任秀芳罗捷
南京农业大学理学院数学系, 江苏 南京 210095
Author(s):
REN Xiufang LUO Jie
Department of Mathematics, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
精神分裂症静息态功能磁共振脑网络图论
Keywords:
Keywords: schizophrenia resting-state functional magnetic resonance imaging brain network graph theory
分类号:
R318;R749.6
DOI:
DOI:10.3969/j.issn.1005-202X.2024.07.006
文献标志码:
A
摘要:
目的:运用静息态功能磁共振探讨精神分裂症患者的脑网络及其拓扑属性。方法:收集the Center of Biomedical Research Excellence提供的35名精神分裂症患者资料作为患者组以及35名健康被试者资料作为对照组,计算两组的局部一致性,并进行统计学分析。然后使用Dosenbachs 160 atlas检查全脑功能网络,提取全脑网络的两个子网络:默认模式网络和躯体运动网络,构成一个新网络,计算全脑网络及新网络的拓扑属性。结果:精神分裂症患者大脑的默认模式网络与躯体运动网络之间及默认模式网络内部的功能连接存在显著减弱(P<0.05, FDR校正),全脑网络聚集系数有所下降,默认模式网络与躯体运动网络构成的网络的全局和局部效率降低(P<0.05)。结论:精神分裂症患者默认模式网络与躯体运动网络之间及默认模式网络内部功能连接存在显著异常,默认模式网络与躯体运动网络之间拓扑属性的显著改变可能成为关键因素。此外,该结论可运用于默认模式网络与躯体运动网络对应的脑神经元随机微分方程组的定性分析,从而对精神分裂症的物理治疗有所帮助。
Abstract:
Abstract: Objective To explore the brain network and its topological properties in schizophrenia patients using resting-state functional magnetic resonance imaging (rs-fMRI). Methods Thirty-five schizophrenia patients (patient group) and 35 healthy subjects (control group) from the Center of Biomedical Research Excellence were collected, and the regional homogeneities of the two groups were calculated for statistical analysis. Dosenbachs 160 atlas was used to examine the whole brain functional network, and extract two sub networks of the whole brain network (default mode network and somatic motor network) for constructing a new network. The topological properties of the whole brain network and the new network were calculated. Results In schizophrenia patients, the functional connectivity between default mode network and somatic motor network and that within the default mode networks were significantly weakened (P<0.05, FDR corrected) the clustering coefficient of the whole brain network was decreased and the global and local efficiencies of the network composed of default mode network and somatic motor network were reduced (P<0.05). Conclusion Abnormal functional connectivity is found between default mode network and somatic motor network and within default mode network in schizophrenia patients, and the significant changes of topological properties between default mode network and somatic motor network may be the key factor. In addition, this conclusion can be applied to qualitative analysis of the brain neuron stochastic differential equations corresponding to default mode network and somatic motor network, which is helpful for the physical therapy for schizophrenia.

相似文献/References:

[1]李亚鹏,沈蓉,戴慧,等.探索大脑网络连接的几种方式--基于静息态功能磁共振数据[J].中国医学物理学杂志,2013,30(01):3898.[doi:10.3969/j.issn.1005-202X.2013.01.015]
[2]李亚鹏,覃媛媛,李炜,等.阿尔茨海默病患者大脑功能网络的改变[J].中国医学物理学杂志,2013,30(06):4510.[doi:10.3969/j.issn.1005-202X.2013.06.011]
[3]吴静,戴培山,赵亚丽,等.成人注意缺陷多动障碍静息态功能连接分析[J].中国医学物理学杂志,2015,32(04):484.[doi:10.3969/j.issn.1005-202X.2015.04.007]
 [J].Chinese Journal of Medical Physics,2015,32(7):484.[doi:10.3969/j.issn.1005-202X.2015.04.007]
[4]杨勇哲,黄飚,冀泓锞,等.精神分裂症的磁共振影像学研究进展[J].中国医学物理学杂志,2016,33(8):848.[doi:10.3969/j.issn.1005-202X.2016.08.019]
 [J].Chinese Journal of Medical Physics,2016,33(7):848.[doi:10.3969/j.issn.1005-202X.2016.08.019]
[5]刘姗姗,王晓艳,王鹏程,等.伴有视网膜病变的2型糖尿病患者大脑静息态功能磁共振成像低频振幅研究[J].中国医学物理学杂志,2016,33(11):1149.[doi:10.3969/j.issn.1005-202X.2016.11.013]
 [J].Chinese Journal of Medical Physics,2016,33(7):1149.[doi:10.3969/j.issn.1005-202X.2016.11.013]
[6]张越,杨勇哲,吴逢春,等.基于多模态磁共振影像的精神分裂症患者多特征分类研究[J].中国医学物理学杂志,2017,34(1):99.[doi:10.3969/j.issn.1005-202X.2017.01.020]
 [J].Chinese Journal of Medical Physics,2017,34(7):99.[doi:10.3969/j.issn.1005-202X.2017.01.020]
[7]王水,傅世舜,尹毅,等. 终末期肾病患者默认网络功能连接上的空间分解与中断[J].中国医学物理学杂志,2017,34(6):619.[doi:DOI:10.3969/j.issn.1005-202X.2017.06.016]
 [J].Chinese Journal of Medical Physics,2017,34(7):619.[doi:DOI:10.3969/j.issn.1005-202X.2017.06.016]
[8]张娜,王瑜,周文,等. 正则化多任务学习在精神分裂症核磁共振成像图像分类中的应用[J].中国医学物理学杂志,2018,35(7):790.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.010]
 ZHANG Na,WANG Yu,ZHOU Wen,et al. Application of regularized multi-task learning in schizophrenia MRI data classification[J].Chinese Journal of Medical Physics,2018,35(7):790.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.010]
[9]许光,吴宏,江桂华,等. 原发性失眠患者大脑额顶网络的异常功能连接[J].中国医学物理学杂志,2018,35(8):988.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.023]
 XU Guang,WU Hong,JIANG Guihua,et al. Abnormal functional connectivity in frontoparietal network in primary insomnia patients[J].Chinese Journal of Medical Physics,2018,35(7):988.[doi:DOI:10.3969/j.issn.1005-202X.2018.08.023]
[10]李嘉慧,刘建鹏,潘智林,等.精神分裂症患者认知功能损伤的神经生物学基础和电生理表现[J].中国医学物理学杂志,2020,37(1):115.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.021]
 LI Jiahui,LIU Jianpeng,et al.Neurobiological bases and electrophysiological manifestations of cognitive impairments in patients with schizophrenia[J].Chinese Journal of Medical Physics,2020,37(7):115.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.021]

备注/Memo

备注/Memo:
【收稿日期】2024-02-12 【基金项目】国家自然科学基金(11601232, 11775116);中央高校基本科研业务费项目(KYZ201537, KJQN201717);江苏省大学生创新训练项目(202310307200Y) 【作者简介】任秀芳,博士,副教授,研究方向:微分方程与动力系统及其应用,E-mail: xiufangren@163.com
更新日期/Last Update: 2024-07-12