[1]刘卫朋,祁业东,李健,等.基于多尺度区域可靠性感知的半监督肺肿瘤分割[J].中国医学物理学杂志,2024,41(9):1078-1085.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.004]
 LIU Weipeng,QI Yedong,et al.Semi-supervised lung tumor segmentation based on multi-scale consistency and regional reliability perception[J].Chinese Journal of Medical Physics,2024,41(9):1078-1085.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.004]
点击复制

基于多尺度区域可靠性感知的半监督肺肿瘤分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第9期
页码:
1078-1085
栏目:
医学影像物理
出版日期:
2024-10-25

文章信息/Info

Title:
Semi-supervised lung tumor segmentation based on multi-scale consistency and regional reliability perception
文章编号:
1005-202X(2024)09-1078-08
作者:
刘卫朋12祁业东12李健1徐海星12
1.河北工业大学人工智能与数据科学学院, 天津 300130; 2.河北工业大学高端装备智能感知与先进控制研究所, 天津 300130
Author(s):
LIU Weipeng1 2 QI Yedong1 2 LI Jian1 XU Haixing1 2
1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China 2. Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Hebei University of Technology, Tianjin 300130, China
关键词:
半监督学习医学图像分割肺肿瘤可靠性感知多尺度一致性
Keywords:
Keywords: semi-supervised learning medical image segmentation lung tumor reliability perception multi-scale consistency
分类号:
R318;TP391.41
DOI:
DOI:10.3969/j.issn.1005-202X.2024.09.004
文献标志码:
A
摘要:
提出一种基于多尺度下一致性和区域可靠性感知的半监督学习方法,在使用少量标注数据的情况下结合未标记的数据来实现高性能的肺部肿瘤分割任务。首先,提出一种多尺度一致性均值教师框架,构建多尺度一致性损失并约束教师学生网络中多个尺度上的输出保持一致,使模型学习到更丰富的一致性知识。此外,提出一种区域可靠性感知方法使一致性学习之间的知识交换更加有效,使模型从无标注的数据中学习到更有效且可靠的知识。本文方法在医学图像分割十项全能比赛肺肿瘤数据集上进行充分的评估,与当前先进的半监督学习方法比较有更优越的性能,验证本文方法的有效性。
Abstract:
Abstract: A semi-supervised learning method based on multi-scale consistency and regional reliability perception is proposed to combine unlabeled data with a small amount of labeled data to achieve high-performance lung tumor segmentation tasks. A multi-scale consistency mean teacher framework is used to construct a multi-scale consistency loss and constrain the outputs in the mean teacher network to be consistent across multiple scales, so that the model learns richer consistency knowledge. In addition, a regional reliability perception scheme is adopted to make the knowledge exchange between consistency learning more efficient, enabling the model to learn more valid and reliable knowledge from unlabeled data. The evaluation on the lung tumor dataset in the Medical Segmentation Decathlon shows superior performance of the proposed method over current state-of-the-art semi-supervised learning methods, validating its effectiveness.

相似文献/References:

[1]万俊,聂生东,王远军,等.基于MRI的脑肿瘤分割技术研究进展[J].中国医学物理学杂志,2013,30(04):4266.[doi:10.3969/j.issn.1005-202X.2013.04.013]
[2]林江,戴齐,欧阳婷雪,等.一种边界和马尔可夫随机场相结合的脑MRI医学图像分割方法[J].中国医学物理学杂志,2015,32(05):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
 [J].Chinese Journal of Medical Physics,2015,32(9):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
[3]吴迪,胡胜,刘伟峰,等. 基于特征融合视觉显著性的医学图像分割[J].中国医学物理学杂志,2018,35(6):670.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
 WU Di,HU Sheng,LIU Weifeng,et al. Medical image segmentation based on visual saliency of feature fusion[J].Chinese Journal of Medical Physics,2018,35(9):670.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
[4]刘国才,官文静,田娟秀,等. 集成自适应回归核的肿瘤生物靶区随机游走勾画方法[J].中国医学物理学杂志,2018,35(7):758.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.004]
 LIU Guocai,GUAN Wenjing,TIAN Juanxiu,et al. A random walk method with adaptive regression-kernel for delineation of biological target volumes of tumors[J].Chinese Journal of Medical Physics,2018,35(9):758.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.004]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(9):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]张富利,杨安宁,路娜,等.基于FC_DenseNet深度学习网络自动分割肺癌放疗中的危及器官[J].中国医学物理学杂志,2021,38(2):259.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.024]
 ZHANG Fuli,YANG Anning,LU Na,et al.FC_Densenet-based autosegmentation of organs-at-risk in lung cancer radiotherapy[J].Chinese Journal of Medical Physics,2021,38(9):259.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.024]
[7]方新林,方艳红,王迪.基于多模态特征融合的脑瘤图像分割方法[J].中国医学物理学杂志,2022,39(6):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
 FANG Xinlin,FANG Yanhong,WANG Di.Brain tumor image segmentation method based on multi-modal feature fusion[J].Chinese Journal of Medical Physics,2022,39(9):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
[8]魏坤,沈记全,赵艳梅.MAUNet:用于皮肤病变分割的轻量级模型[J].中国医学物理学杂志,2023,40(5):555.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.006]
 WEI Kun,SHEN Jiquan,ZHAO Yanmei.MAUNet: a lightweight model for skin lesion segmentation[J].Chinese Journal of Medical Physics,2023,40(9):555.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.006]
[9]周金治,胡震,郭莉莉,等.基于GAN-DAUnet的肝脏CT图像肿瘤分割算法[J].中国医学物理学杂志,2023,40(8):971.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.008]
 ZHOU Jinzhi,HU Zhen,et al.Liver CT image tumor segmentation algorithm based on GAN-DAUnet[J].Chinese Journal of Medical Physics,2023,40(9):971.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.008]
[10]段逸凡,肖洪兵,Rahman Md Mostafizur.基于3DSEU-Net不确定性循环焦点平均教师的半监督脑肿瘤分割[J].中国医学物理学杂志,2023,40(9):1121.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.010]
 DUAN Yifan,XIAO Hongbing,Rahman Md Mostafizur.Semi-supervised learning for brain tumor segmentation through 3DSEU-Net as uncertainty-aware mean teacher and cyclical focal loss[J].Chinese Journal of Medical Physics,2023,40(9):1121.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.010]

备注/Memo

备注/Memo:
【收稿日期】2024-01-20 【基金项目】国家重点研发计划(2020YFB1313703);国家自然科学基金(62027813);河北省重点研发计划(21372003D);河北省自然科学基金(F2022202054) 【作者简介】刘卫朋,博士,研究员,研究方向:医学图像处理、手术机器人控制,E-mail: liuweipeng@hebut.edu.cn
更新日期/Last Update: 2024-09-26