[1]刘静妮,盛玉武,赵长秀,等.基于卷积神经网络的X线片下肢关节角度识别算法[J].中国医学物理学杂志,2024,41(8):996-999.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.012]
 LIU Jingni,SHENG Yuwu,ZHAO Changxiu,et al.Lower limb joint angle calculation algorithm based on convolutional neural network in X-ray films[J].Chinese Journal of Medical Physics,2024,41(8):996-999.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.012]
点击复制

基于卷积神经网络的X线片下肢关节角度识别算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第8期
页码:
996-999
栏目:
医学影像物理
出版日期:
2024-08-31

文章信息/Info

Title:
Lower limb joint angle calculation algorithm based on convolutional neural network in X-ray films
文章编号:
1005-202X(2024)08-0996-04
作者:
刘静妮1盛玉武1赵长秀1牛存良2黄国源2许长栋1赵姗姗1陈彬1
1.武威市人民医院放射科, 甘肃 武威 733000; 2.武威市人民医院骨科, 甘肃 武威 733000
Author(s):
LIU Jingni1 SHENG Yuwu1 ZHAO Changxiu1 NIU Cunliang2 HUANG Guoyuan2 XU Changdong1 ZHAO Shanshan1 CHEN Bin1
1. Department of Radiology, Wuwei Peoples Hospital, Wuwei 733000, China 2. Department of Orthopedics, Wuwei Peoples Hospital, Wuwei 733000, China
关键词:
卷积神经网络目标检测特征点定位下肢力线
Keywords:
Keywords: convolutional neural network object detection feature point localization lower limb power line
分类号:
R318;TP18
DOI:
DOI:10.3969/j.issn.1005-202X.2024.08.012
文献标志码:
A
摘要:
提出一种基于卷积神经网络的X线片下肢关节角度识别算法,首先在X线片中使用Yolov5目标检测模型来识别特定类别的感兴趣区域,并使用U-Net模型进行热图回归来识别关键特征点,最后进行下肢关节角度的计算。研究结果表明,本文提出的算法相比于之前的算法精度更高,结果准确可靠,为临床研究和实践提供参考。
Abstract:
Abstract: A convolutional neural network-based algorithm is proposed for calculating lower limb joint angle in X-ray films. After identifying the region of interest of a specific category in X-ray films through Yolov5 object detection model, U-Net model is used to perform heat map regression for identifying the key feature points, and then the lower limb joint angle is calculated. The results show that the proposed algorithm has higher accuracy than the previous algorithms and can obtain accurate and reliable results, providing references for clinical research and practice.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(8):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(8):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[3]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(8):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(8):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]申代友,库洪安,皮红英,等. 基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志,2019,36(2):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
 SHEN Daiyou,KU Hongan,PI Hongying,et al. Depth camera-based fall detection system for the elderly[J].Chinese Journal of Medical Physics,2019,36(8):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]王自强,刘洪运,石金龙,等.基于卷积神经网络的心电图心博识别[J].中国医学物理学杂志,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
 WANG Ziqiang,LIU Hongyun,SHI Jinlong,et al.ECG heartbeat recognition based on convolution neural network[J].Chinese Journal of Medical Physics,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
[8]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(8):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
 JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(8):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]

备注/Memo

备注/Memo:
【收稿日期】2024-02-26 【基金项目】甘肃省武威市科技计划项目(WW23B02SF056) 【作者简介】刘静妮,硕士研究生,主治医师,研究方向:骨关节疾病影像诊断,E-mail: liujn1222@163.com 【通信作者】陈彬,主治医师,研究方向:骨关节疾病影像诊断,E-mail: 15379332288@139.com
更新日期/Last Update: 2024-08-31