[1]蒋美艳,张辉.机器学习算法对心脏病预测效能的研究[J].中国医学物理学杂志,2024,41(7):905-909.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.018]
 JIANG Meiyan,ZHANG Hui,et al.Efficacy of machine learning algorithms for heart disease prediction[J].Chinese Journal of Medical Physics,2024,41(7):905-909.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.018]
点击复制

机器学习算法对心脏病预测效能的研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第7期
页码:
905-909
栏目:
医学人工智能
出版日期:
2024-07-25

文章信息/Info

Title:
Efficacy of machine learning algorithms for heart disease prediction
文章编号:
1005-202X(2024)07-0905-05
作者:
蒋美艳12张辉12
1.广东医科大学第一临床医学院, 广东 湛江 524023; 2.广东医科大学广东省第二人民医院麻醉科, 广东 广州 510317
Author(s):
JIANG Meiyan1 2 ZHANG Hui1 2
1. The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China 2. Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangdong Medical University, Guangzhou 510317, China
关键词:
机器学习心脏病预测医疗大数据
Keywords:
machine learning heart disease prediction medical big data
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2024.07.018
文献标志码:
A
摘要:
目的:探索基于机器学习的方法,包括判定树(DT)、随机森林(RF)、支持向量机(SVM)、K最近邻(KNN)和朴素贝叶斯(NB),构建心脏病预测模型,以实现心脏病的准确预测。方法:使用克利夫兰心脏病数据集作为数据源,通过皮尔逊相关系数选择显著特征,使用DT、RF、SVM、KNN和NB算法构建心脏病预测模型,通过准确度、精确度、召回率、F1分数和受试者工作特征曲线下面积(AUC)值等多项指标评估模型性能。结果:研究纳入303个样本,样本13个临床特征中有11个显著特征,RF预测模型获得最高的准确度(0.869)、召回率(0.906)、F1分数(0.879)和AUC值(0.93),NB预测模型获得最高的精确度(0.900)。结论:基于机器学习的方法能够有效进行心脏病预测,特别是RF预测模型具有显著优势,NB预测模型也表现出令人满意的效果。
Abstract:
Objective To explore the prediction of heart diseases using machine learning-based methods, including decision trees (DT), random forest (RF), support vector machine (SVM), K-nearest neighbors (KNN), and naive Bayes (NB). Methods The Cleveland heart disease dataset was utilized as the data source. Significant features were selected using Pearson correlation coefficients. Heart disease prediction models were constructed using DT, RF, SVM, KNN, and NB algorithms, separately, and the model performance was evaluated with multiple metrics, including accuracy, precision, recall rate, F1 score, and AUC value. Results The study included 303 samples, and among the 13 clinical features, 11 were found to be significant. RF prediction model achieved the highest accuracy (0.869), recall rate (0.906), F1 score (0.879), and AUC value (0.93), while NB prediction model obtained the highest precision (0.900). Conclusion Machine learning-based methods are promising in heart disease prediction, with the RF prediction model demonstrating significant advantages and NB prediction model exhibiting satisfactory performance.

相似文献/References:

[1]王美娇,李莎,岳海振,等. Model Analytics辅助的智能放疗计划建模[J].中国医学物理学杂志,2017,34(9):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
 [J].Chinese Journal of Medical Physics,2017,34(7):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
[2]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(7):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[3]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(7):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
[4]刘渊,程玉玉,贺睿敏,等.基于机器学习的鼻咽癌转移淋巴结鉴别模型[J].中国医学物理学杂志,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
 LIU Yuan,CHENG Yuyu,HE Ruimin,et al.Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(7):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
[5]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(7):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[6]雷炳业,潘嘉瑜,吴逢春,等.基于机器学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
 LEI Bingye,PAN Jiayu,et al.Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J].Chinese Journal of Medical Physics,2020,37(7):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
[7]李彩,范炤.基于机器学习的阿尔兹海默症分类预测[J].中国医学物理学杂志,2020,37(3):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
 LI Cai,FAN Zhao.Classification and prediction of Alzheimer’s disease based on machine learning[J].Chinese Journal of Medical Physics,2020,37(7):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
[8]闫凤,牛振洋,费振乐,等.机器学习在肺癌VMAT计划中对危及器官剂量预测的可行性[J].中国医学物理学杂志,2020,37(7):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
 YAN Feng,NIU Zhenyang,FEI Zhenle,et al.Feasibility of machine learning in OAR dosimetric prediction in VMAT plan for lung cancer[J].Chinese Journal of Medical Physics,2020,37(7):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
[9]黄仕雄,杨松华,王亮,等.基于预测剂量引导的宫颈癌自动计划研究[J].中国医学物理学杂志,2020,37(9):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
 HUANG Shixiong,YANG Songhua,WANG Liang,et al.Automatic planning of radiotherapy for cervical carcinoma based on dose prediction[J].Chinese Journal of Medical Physics,2020,37(7):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
[10]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(7):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]

备注/Memo

备注/Memo:
【收稿日期】2024-01-20 【基金项目】广东省重点领域研发计划(2020B0101130020) 【作者简介】蒋美艳,硕士研究生,研究方向:麻醉、心脏病预测,E-mail: jmygmu@163.com 【通信作者】张辉,教授,研究方向:术后疼痛、机器学习,E-mail: zhanghui@gd2h.org.cn
更新日期/Last Update: 2024-07-13