相似文献/References:
[1]郭垚垚,陈兆学.一种脉搏波和心电信号时域基线漂移消除方法[J].中国医学物理学杂志,2016,33(2):167.[doi:10.3969/j.issn.1005-202X.2016.02.012]
[J].Chinese Journal of Medical Physics,2016,33(4):167.[doi:10.3969/j.issn.1005-202X.2016.02.012]
[2]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[J].Chinese Journal of Medical Physics,2017,34(4):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[3]苏志刚,朱海玲,郝敬堂. 基于高斯混合模型的脉搏波特征提取方法[J].中国医学物理学杂志,2018,35(1):76.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.014]
SU Zhigang,ZHU Hailing,HAO Jingtang. Gaussian mixture model-based method for extracting the features of pulse wave[J].Chinese Journal of Medical Physics,2018,35(4):76.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.014]
[4]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(4):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[5]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(4):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[6]苏志刚,吕江波,郝敬堂. 基于平滑先验法去除脉搏波基线漂移[J].中国医学物理学杂志,2018,35(10):1197.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.017]
SU Zhigang,LÜ,Jiangbo,et al. Removal of baseline drift of pulse wave based on smoothness prior[J].Chinese Journal of Medical Physics,2018,35(4):1197.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.017]
[7]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(4):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[8]陈倩蓉,梁永波,赵飞骏,等. 基于心电-脉搏波的心血管疾病识别研究[J].中国医学物理学杂志,2019,36(2):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
CHEN Qianrong,LIANG Yongbo,ZHAO Feijun,et al. Cardiovascular disease recognition based on electrocardiogram data and pulse wave[J].Chinese Journal of Medical Physics,2019,36(4):210.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.017]
[9]程敏,陈兆学. 基于指端脉搏波视频信号的心率稳定检测算法[J].中国医学物理学杂志,2019,36(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.018]
CHENG Min,CHEN Zhaoxue. An algorithm based on video signals of pulse waves on the finger tip for stable detection of heart rates[J].Chinese Journal of Medical Physics,2019,36(4):215.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.018]
[10]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[11]周韡鼎,陈兆学.基于深度学习的指-桡端脉搏波信号转换方法[J].中国医学物理学杂志,2023,40(2):202.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.013]
ZHOU Weiding,CHEN Zhaoxue.Deep learning-based method for finger-radial PPG signal transferring[J].Chinese Journal of Medical Physics,2023,40(4):202.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.013]
[12]张瑞芳,梁永波,崔谋,等.结合多模态融合方式的脉搏波房颤识别[J].中国医学物理学杂志,2023,40(10):1260.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.013]
ZHANG Ruifang,LIANG Yongbo,,et al.Multimodal fusion approach to detect atrial fibrillation using PPG[J].Chinese Journal of Medical Physics,2023,40(4):1260.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.013]