[1]王泽朋,李坤鹏,周玉,等.基于机器学习的胃癌关键基因筛选及预测模型构建[J].中国医学物理学杂志,2024,41(1):115-124.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.017]
 WANG Zepeng,LI Kunpeng,ZHOU Yu,et al.Key gene screening and prediction model construction of gastric cancer based on machine learning[J].Chinese Journal of Medical Physics,2024,41(1):115-124.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.017]
点击复制

基于机器学习的胃癌关键基因筛选及预测模型构建()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第1期
页码:
115-124
栏目:
其他(激光医学等)
出版日期:
2024-01-23

文章信息/Info

Title:
Key gene screening and prediction model construction of gastric cancer based on machine learning
文章编号:
1005-202X(2024)01-0115-10
作者:
王泽朋李坤鹏周玉李四海
甘肃中医药大学信息工程学院, 甘肃 兰州730100
Author(s):
WANG Zepeng LI Kunpeng ZHOU Yu LI Sihai
School of Information Engineering, Gansu University of Chinese Medicine, Lanzhou 730100, China
关键词:
胃癌基因筛选关键基因生物信息学机器学习
Keywords:
Keywords: gastric cancer gene screening key gene bioinformatics machine learning
分类号:
R318;R735.2
DOI:
DOI:10.3969/j.issn.1005-202X.2024.01.017
文献标志码:
A
摘要:
目的:为了验证与胃癌相关的遗传特征,提出一种混合式特征选择方法确定靶基因,进一步分析其意义并建立新的诊断预测模型。方法:对原始胃癌数据进行生物信息学方差分析,使用随机森林、支持向量机的递归特征消除、套索算法等机器学习方法筛选胃癌相关基因,对结果取交集,获得关键基因集。进行富集分析,确定关键基因并验证;依据关键基因构建基于多层感知器(MLP)、逻辑回归、决策树等8种机器学习分类算法的诊断预测模型。结果:混合式的特征选择方法筛选出的关键基因与肿瘤发生和发展的生物学过程密切相关;8个关键基因(TXNDC5、BMP8A、ONECUT2、COL10A1、JCHAIN、INHBA、LCTL和TRIM59)被确定为诊断效果较好的胃癌潜在标志物;根据8种分类模型的ROC曲线和准确率结果可知,MLP为最佳胃癌预测模型,其准确率高达97.77%,比他人构建的Xgboost胃癌预测模型准确率高出3.83%。结论:本研究获得了诊断和预防胃癌的8个关键基因,并建立了最佳预后模型。
Abstract:
Abstract: Objective To verify the genetic characteristics associated with gastric cancer, and to propose a hybrid feature selection method for identifying target genes, further analyzing their significance and establishing a new diagnostic prediction model. Methods Analysis of variance in bioinformatics was performed on the original gastric cancer data, and then machine learning methods such as random forest, recursive feature elimination of support vector machine, and LASSO algorithm were used to screen gastric cancer associated genes, and the intersection of results was taken as the key gene set. The key genes were identified and verified through enrichment analysis. The diagnosis and prediction models based on 8 kinds of machine learning classification algorithms such as multi-layer perceptron, logistic regression and decision tree, were constructed using the key genes. Results The key genes selected by the hybrid feature selection method were closely related to the tumorigenesis and development. Eight key genes (TXNDC5, BMP8A, ONECUT2, COL10A1, JCHAIN, INHBA, LCTL and TRIM59) were identified as potential markers of good diagnostic efficacy in gastric cancer. The ROC curve and accuracy results demonstrated that among the 8 classification models, MLP is the best gastric cancer prediction model, with an accuracy of 97.77%, which was 3.83% higher than that of Xgboost gastric cancer prediction model. Conclusion The study identifies 8 key genes for the diagnosis and prevention of gastric cancer, and establishes the optimal prognosis model.

相似文献/References:

[1]易伟松,刘文强,陆 东,等.高光谱成像结合化学计量学诊断胃癌组织[J].中国医学物理学杂志,2015,32(01):124.[doi:10.3969/j.issn.1005-202X.2015.01.028]
[2]宋威,赵迪,鹿红,等.胃癌术后调强放疗射野角度优化的剂量学[J].中国医学物理学杂志,2015,32(06):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
 [J].Chinese Journal of Medical Physics,2015,32(1):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
[3]易伟松,钱辉跃,江厚敏.光纤和显微拉曼光谱结合化学计量学鉴别胃癌组织[J].中国医学物理学杂志,2016,33(2):134.[doi:10.3969/j.issn.1005-202X.2016.02.006]
[4]卢晓光,刘细友,郑言宏,等.胃癌术后不同IMRT布野方式对剂量分布的影响[J].中国医学物理学杂志,2016,33(7):664.[doi:10.3969/j.issn.1005-202X.2016.07.004]
[5]刘光波,刘志坤,闫慧娟,等.不同照射技术在全胃癌放疗中的剂量学比较与分析[J].中国医学物理学杂志,2016,33(11):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
 [J].Chinese Journal of Medical Physics,2016,33(1):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
[6]蒋大振,刘晖,戴静,等. 胃癌调强放疗中多叶光栅3种状态的剂量学比较[J].中国医学物理学杂志,2019,36(2):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
 JIANG Dazhen,LIU Hui,DAI Jing,et al. Dosimetric comparison among split-field, fixed-jaw and rotating multi-leaf collimator in the radiotherapy of gastric carcinoma[J].Chinese Journal of Medical Physics,2019,36(1):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
[7]胡志纲,刘勇强,任建,等.胃癌术后不同布野方案对调强放疗剂量分布的影响[J].中国医学物理学杂志,2019,36(12):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
 HU Zhigang,LIU Yongqiang,REN Jian,et al.Effects of different field arrangements on the dose distribution of postoperative intensity-modulated radiotherapy for gastric cancer[J].Chinese Journal of Medical Physics,2019,36(1):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
[8]范显文,何二松,林昌荣,等.胃癌患者身体质量指数对腹腔镜术式选择及效果的影响[J].中国医学物理学杂志,2020,37(4):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
 FAN Xianwen,HE Ersong,LIN Changrong,et al.Effects of body mass index on the selection and efficacy of laparoscopic surgery in patients with gastric cancer[J].Chinese Journal of Medical Physics,2020,37(1):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
[9]赵呈陆,方志军,高永彬,等.基于改进型V-net卷积神经网络的胃壁分割方法[J].中国医学物理学杂志,2021,38(10):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
 ZHAO Chenglu,FANG Zhijun,GAO Yongbin,et al.Gastric wall segmentation based on improved V-net convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(1):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
[10]张育,赵轶峰,苏卓彬,等.基于卷积神经网络的胃癌癌前病变图像分类方法[J].中国医学物理学杂志,2022,39(2):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]
 ZHANG Yu,ZHAO Yifeng,SU Zhuobin,et al.Image classification of gastric precancerous lesions based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(1):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]

备注/Memo

备注/Memo:
【收稿日期】2023-10-12 【基金项目】甘肃省科技计划项目(21JR1RA272);甘肃省教育厅高校教师创新基金项目(2023B-105) 【作者简介】王泽朋,硕士,研究方向:生物信息学、机器学习,E-mail: 19193137887@163.com 【通信作者】李四海,副教授,研究方向:数据挖掘、机器学习、光谱分析,E-mail: lisihai@gszy.edu.cn
更新日期/Last Update: 2024-01-23