[1]贺斌,高永彬.基于非局部卷积和卷积注意力模块的眩晕眼震诊断方法[J].中国医学物理学杂志,2024,41(5):571-578.[doi:DOI:10.3969/j.issn.1005-202X.2024.05.007]
 HE Bin,GAO Yongbin.Diagnostic methods for nystagmus in vertigo based on non-local convolution and convolutional block attention module[J].Chinese Journal of Medical Physics,2024,41(5):571-578.[doi:DOI:10.3969/j.issn.1005-202X.2024.05.007]
点击复制

基于非局部卷积和卷积注意力模块的眩晕眼震诊断方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第5期
页码:
571-578
栏目:
医学影像物理
出版日期:
2024-05-23

文章信息/Info

Title:
Diagnostic methods for nystagmus in vertigo based on non-local convolution and convolutional block attention module
文章编号:
1005-202X(2024)05-0571-08
作者:
贺斌高永彬
上海工程技术大学电子电气工程学院, 上海 201620
Author(s):
HE Bin GAO Yongbin
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
关键词:
良性阵发性位置性眩晕医学图像处理时序数据分类目标检测视频眼震数据分类
Keywords:
Keywords: benign paroxysmal positional vertigo medical image processing temporal data classification object detection video nystagmus data classification
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2024.05.007
文献标志码:
A
摘要:
鉴于良性阵发性位置性眩晕的复杂致病因素和诊断困难等问题,提出一种新的基于非局部卷积和卷积注意力模块(CBAM)的眩晕眼震诊断方法。首先,通过构建目标检测模型定位瞳孔,从而捕捉眼球运动并提取水平和垂直运动轨迹时序数据。其次,采用分类模型进行分类检测,该分类模型采用非局部卷积来捕获眼震数据中的远程依赖关系特征,并引入CBAM来提取特征层中的高级和低级语义信息,从而提高了分类模型的检测性能。在眼耳鼻喉科医院提供的视频眼震数据集上进行了实验,结果表明,与主流方法相比,本文所提出的诊断方法在精确率、召回率、准确率、平均F1值等评估指标上比主流方法分别提高了1.82%、2.09%、1.62%和1.96%,表明了本文方法的显著性优势。
Abstract:
Abstract: In view of complex pathogenic factors and diagnostic difficulties of benign paroxysmal positional vertigo, a novel method for diagnosing nystagmus in vertigo based on non-local convolutional and convolutional block attention module(CBAM) is proposed. An object detection model is constructed to locate the pupil, thereby tracking eye movement and extract temporal data of horizontal and vertical motion trajectories. Subsequently, a classification model is employed for detection and classification, utilizing a non-local convolutional module to capture remote dependency relationships in nystagmus data, and introducing CBAM to extract high-and low-level semantic information in the feature layer for enhancing the detection performance. Experiments were conducted on a video nystagmus dataset provided by the Eye, Ear, Nose and Throat Hospital. The results show that compared with the best mainstream method, the proposed method improves precision, recall rate, accuracy, and average F1 score by 1.82%, 2.09%, 1.62%, and 1.96%, respectively, demonstrating its superiority.

相似文献/References:

[1]许红玉,聂生东,刘颖,等.《医学图像处理》课程网站建设[J].中国医学物理学杂志,2013,30(02):4076.[doi:10.3969/j.issn.1005-202X.2013.02.027]
[2]王弈,李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志,2013,30(03):4138.[doi:10.3969/j.issn.1005-202X.2013.03.013]
[3]张红军,闫士举.基于双侧乳腺图像“共用”阈值分割的乳腺癌近期发病预测[J].中国医学物理学杂志,2017,34(8):820.[doi:DOI:10.3969/j.issn.1005-202X.2017.08.013]
[4]皮一飞,吴茜,裴曦,等.基于掩膜优化的多模态医学图像刚性配准[J].中国医学物理学杂志,2018,35(9):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
 PI Yifei,WU Qian,PEI Xi,et al.Rigid registration of multimodal medical images based on mask optimization[J].Chinese Journal of Medical Physics,2018,35(5):1022.[doi:10.3969/j.issn.1005-202X.2018.09.006]
[5]孙旭阳,石更强.基于CT影像的人体踝关节三维重建[J].中国医学物理学杂志,2022,39(7):850.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.010]
 SUN Xuyang,SHI Gengqiang.Three-dimensional reconstruction of the ankle joint based on CT image[J].Chinese Journal of Medical Physics,2022,39(5):850.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.010]
[6]刘雪冰,高永彬.良性阵发性位置性眩晕的辅助诊断[J].中国医学物理学杂志,2023,40(11):1446.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.021]
 LIU Xuebing,GAO Yongbin,et al.Auxiliary diagnosis of benign paroxysmal positional vertigo[J].Chinese Journal of Medical Physics,2023,40(5):1446.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.021]
[7]潘依乐,高永彬.多模态弱监督学习在肝癌图像生成与分割中的应用[J].中国医学物理学杂志,2024,41(1):8.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.002]
 PAN Yile,GAO Yongbin.Application of multimodal weakly-supervised learning in image synthesis and segmentation of liver cancer[J].Chinese Journal of Medical Physics,2024,41(5):8.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.002]
[8]刘燕茹,毕宇越,汪宇航,等.“新医科”背景下医学图像处理教学软件的研究与开发[J].中国医学物理学杂志,2024,41(3):333.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.011]
 LIU Yanru,BI Yuyue,WANG Yuhang,et al.Research and development of teaching software for medical image processing under the background of "new medical science"[J].Chinese Journal of Medical Physics,2024,41(5):333.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.011]
[9]王卓然,方志军,王海玲,等.基于双重注意力机制增强的复合型眼震分类框架[J].中国医学物理学杂志,2024,41(9):1093.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.006]
 WANG Zhuoran,FANG Zhijun,WANG Hailing,et al.Composite nystagmus classification framework enhanced by dual attention mechanism[J].Chinese Journal of Medical Physics,2024,41(5):1093.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.006]

备注/Memo

备注/Memo:
【收稿日期】2023-12-18 【基金项目】上海市科委“科技创新行动计划”社会发展科技攻关项目(21DZ1204900) 【作者简介】贺斌,硕士研究生,研究方向:医学图像处理,E-mail: hebin99@foxmail.com 【通信作者】高永彬,博士,副教授,研究方向:计算机视觉,智慧医疗,E-mail: gaoyongbin@sues.edu.cn
更新日期/Last Update: 2024-05-24