[1]王昱然,彭润霖,周钰斌,等.基于无监督学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2024,41(6):782-787.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.018]
 WANG Yuran,PENG Runlin,ZHOU Yubin,et al.Advances in auxiliary diagnosis of neuropsychiatric disorders based on unsupervised learning[J].Chinese Journal of Medical Physics,2024,41(6):782-787.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.018]
点击复制

基于无监督学习的神经精神疾病辅助诊断研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第6期
页码:
782-787
栏目:
医学人工智能
出版日期:
2024-06-25

文章信息/Info

Title:
Advances in auxiliary diagnosis of neuropsychiatric disorders based on unsupervised learning
文章编号:
1005-202X(2024)06-0782-06
作者:
王昱然1彭润霖1周钰斌1陈鹏天1吴凯13456周静23456
1.华南理工大学生物医学科学与工程学院, 广东 广州 511442; 2.华南理工大学材料科学与工程学院, 广东 广州 510006; 3.华南理工大学国家人体组织功能重建工程技术研究中心, 广东 广州 510006; 4.广东省精神疾病转化医学工程技术研究中心, 广东 广州 510370; 5.广东省老年痴呆诊断与康复工程技术研究中心, 广东 广州 510500; 6.华南理工大学广东省生物医学工程重点实验室, 广东 广州 510006
Author(s):
WANG Yuran1 PENG Runlin1 ZHOU Yubin1 CHEN Pengtian1 WU Kai1 3 4 5 6 ZHOU Jing2 3 4 5 6
1. School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China 2. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China 3. National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China 4. Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China 5. Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China 6. Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
关键词:
无监督学习神经精神疾病辅助诊断生物亚型综述
Keywords:
Keywords: unsupervised learning neuropsychiatric disorder auxiliary diagnosis biological subtype review
分类号:
R318;R74
DOI:
DOI:10.3969/j.issn.1005-202X.2024.06.018
文献标志码:
A
摘要:
传统的神经精神疾病诊断主要依赖于专科医生的主观评价、神经心理测试、生化检查等方式,缺乏客观、精准、智能的生物学标记物。近年来,随着神经影像及人工智能技术的快速发展,无监督学习这种具有不依赖外部标签、模型泛化性高、特征自动提取等优点的机器学习方法,已经被广泛应用于神经精神疾病辅助诊断领域。相较于传统的监督学习方法,无监督学习更能实现个体化、精准化、智能化的神经精神疾病诊断。文章综述了近年来无监督学习在神经精神疾病辅助诊断中的研究进展,总结了无监督学习在阿尔兹海默症、精神分裂症、重度抑郁症以及自闭症谱系障碍中的研究成果,并指出当前研究存在图像处理能力差、样本量小、缺少生化指标数据等问题及难点,融合神经网络、多站点大样本、多维度数据深度融合是无监督学习方法应用的发展方向。
Abstract:
Abstract: The traditional diagnosis of neuropsychiatric disorders mainly depends on the subjective evaluation of specialists, neuropsychological test, biochemical examination and other methods, which lacks objective, accurate and intelligent biomarkers. With the rapid development of neuroimaging and artificial intelligence technology, unsupervised learning has been widely used in the auxiliary diagnosis of neuropsychiatric disorders for it has the advantages of independence of external labels, high model generalization, and automatic feature extraction. Compared with the traditional supervised learning methods, unsupervised learning is more capable of achieving objective, accurate and intelligent diagnosis of neuropsychiatric disorders. Herein an overview on the applications of unsupervised learning in the auxiliary diagnosis of neuropsychiatric disorders is provided, summarizing the findings of unsupervised learning in Alzheimers disease, schizophrenia, major depressive disorder, and autism spectrum disorder, and discussing the research challenges such as insufficient image processing capability, small sample size, insufficient biochemical index data. The corporation with neural network, multi-site large sample size, and deep fusion of multidimensional data are the development trends of unsupervised learning method.

相似文献/References:

[1]雷炳业,潘嘉瑜,吴逢春,等.基于机器学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
 LEI Bingye,PAN Jiayu,et al.Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J].Chinese Journal of Medical Physics,2020,37(6):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
[2]高晨洋,吴凯,李文豪,等.EEG-fNIRS技术在神经精神疾病研究中的应用进展[J].中国医学物理学杂志,2024,41(3):348.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.013]
 GAO Chenyang,WU Kai,,et al.Advances in application of EEG-fNIRS technology in researches on neuropsychiatric disorders[J].Chinese Journal of Medical Physics,2024,41(6):348.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.013]

备注/Memo

备注/Memo:
【收稿日期】2024-01-12 【基金项目】广东省科技重点领域研发计划项目(2020B0101130020, 2020B0404010002, 2018B030335001);国家重点研发计划(2020YFC2004300, 2020YFC2004301, 2021YFC2009400, 2021YFC2009404);国家自然科学基金(72174082);广东省基础与应用基础研究基金自然科学基金杰出青年项目(2021B1515020064);广州市科技计划(201903010032, 202103000032, 202206010077, 202206060005, 202206080005, 202206010034);广东省普通高校重点实验室项目(2020KSYS001) 【作者简介】王昱然,硕士,研究方向:医学人工智能,E-mail: 202220160476@mail.scut.edu.cn 【通信作者】周静,博士,讲师,研究方向:生物医学信号处理、医学人工智能,E-mail: hellozj@scut.edu.cn
更新日期/Last Update: 2024-06-25