[1]刘潇霜,张伟.采用融合ResNet和Transformer的U-Net进行疟疾感染红细胞分割[J].中国医学物理学杂志,2024,41(2):191-197.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.011]
 LIU Xiaoshuang,ZHANG Wei.Segmentation of malaria-infected erythrocytes using U-Net incorporating Transformer and ResNet[J].Chinese Journal of Medical Physics,2024,41(2):191-197.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.011]
点击复制

采用融合ResNet和Transformer的U-Net进行疟疾感染红细胞分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第2期
页码:
191-197
栏目:
医学影像物理
出版日期:
2024-03-13

文章信息/Info

Title:
Segmentation of malaria-infected erythrocytes using U-Net incorporating Transformer and ResNet
文章编号:
1005-202X(2024)02-0191-07
作者:
刘潇霜张伟
甘肃中医药大学信息工程学院, 甘肃 兰州 730000
Author(s):
LIU Xiaoshuang ZHANG Wei
School of Information Engineering, Gansu University of Chinese Medicine, Lanzhou 730000, China
关键词:
疟疾U-NetTransformer语义分割
Keywords:
malaria U-Net Transformer semantic segmentation
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2024.02.011
文献标志码:
A
摘要:
针对疟疾感染红细胞图像分割模型分割性能不高的问题,提出一种改进的U-Net网络模型,融合ResNet和Transformer。首先编码器部分使用ResNet,加深特征提取网络,以提取更深层次的特征;然后将ResNet输出传入Transformer模块进行目标区域特征的加强;最后通过解码器模块进行特征融合并输出结果。在疟疾显微图像数据集上,本文方法的Dice相似系数、平均交并比、类别平均像素准确率均优于U-Net网络,分别达到了87.40%、76.85%、85.28%。本文方法可以提高疟疾感染红细胞图像的分割精度,为疟疾诊断提供更有效和准确的解决方案。
Abstract:
A novel U-Net network model which integrates ResNet and Transformer is proposed to address the problem of poor malaria-in fected erythrocyte performance of the existing models. ResNet is used in the encoder to deepen the feature extraction network for extracting deeper features, and the ResNet output is inputted into Transformer module for the feature enhancement in the target area, and finally the decoder module is used to perform feature fusion and output the results. The experiment on the malaria microscopy image dataset shows that the proposed method outperforms U-Net in Dice similarity coefficient, mean intersection over union, and mean pixel accuracy, reaching 87.40%, 76.85%, and 85.28%, respectively. The proposed method can improve the accuracy of malaria-infected erythrocyte segmentation and provide a more effective and accurate solution for malaria diagnosis.

相似文献/References:

[1]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(2):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[2]常艳奎,彭昭,周解平,等.基于U-net的心脏自动勾画模型的临床应用及改进[J].中国医学物理学杂志,2020,37(10):1218.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.002]
 CHANG Yankui,PENG Zhao,ZHOU Jieping,et al.Clinical application and improvement of U-net-based model for automatic segmentation of the heart[J].Chinese Journal of Medical Physics,2020,37(2):1218.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.002]
[3]董国亚,宋立明,李雅芬,等.基于深度学习的跨模态医学图像转换[J].中国医学物理学杂志,2020,37(10):1335.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.021]
 DONG Guoya,SONG Liming,et al.Cross-modality medical image synthesis based on deep learning[J].Chinese Journal of Medical Physics,2020,37(2):1335.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.021]
[4]董宇波,王蕊,赵慧娟,等.革兰氏染色细菌显微图像深度学习分类与计数[J].中国医学物理学杂志,2021,38(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.020]
 DONG Yubo,WANG Rui,ZHAO Huijuan,et al.Classification and counting of Gram-stained bacteria by deeply learning in micro-image[J].Chinese Journal of Medical Physics,2021,38(2):127.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.020]
[5]莫春梅,周金治,李雪,等.基于改进U-Net的肝脏分割方法[J].中国医学物理学杂志,2021,38(5):571.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.009]
 MO Chunmei,ZHOU Jinzhi,et al.Liver segmentation method based on improved U-Net[J].Chinese Journal of Medical Physics,2021,38(2):571.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.009]
[6]李雪,周金治,莫春梅,等.基于特征融合的U-Net肺自动分割方法[J].中国医学物理学杂志,2021,38(6):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
 LI Xue,ZHOU Jinzhi,et al.U-Net automatic lung segmentation based on feature fusion[J].Chinese Journal of Medical Physics,2021,38(2):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
[7]顾国浩,龙英文,吉明明.U-Net改进及其在新冠肺炎图像分割的应用[J].中国医学物理学杂志,2022,39(8):1041.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
 GU Guohao,LONG Yingwen,JI Mingming.Improved U-Net and its application in COVID-19 image segmentation[J].Chinese Journal of Medical Physics,2022,39(2):1041.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
[8]师文博,杨环,西永明,等.基于自注意力的双通路全脊柱 X 光图像分割模型[J].中国医学物理学杂志,2022,39(11):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
 SHI Wenbo,YANG Huan,XI Yongming,et al.Self-attention based dual pathway network for spine segmentation in X-ray image[J].Chinese Journal of Medical Physics,2022,39(2):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
[9]陈菁菁,李小霞,吕念祖.结合通道权重更新与密集残差金字塔空间注意力的皮肤病变分割方法[J].中国医学物理学杂志,2023,40(1):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
 CHEN Jingjing,LI Xiaoxia,L?Nianzu,et al.Skin lesion segmentation method combining channel weight update and dense residual pyramid spatial attention[J].Chinese Journal of Medical Physics,2023,40(2):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
[10]吴传锋,金鑫妍,白司悦,等.基于U-Net结合改进算法对放疗危及器官自动勾画研究[J].中国医学物理学杂志,2023,40(3):303.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.008]
 WU Chuanfeng,JIN Xinyan,BAI Siyue,et al.Auto-segmentation of organs-at-risk for radiotherapy using U-Net combined with improved algorithms[J].Chinese Journal of Medical Physics,2023,40(2):303.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.008]

备注/Memo

备注/Memo:
【收稿日期】2023-10-26 【基金项目】甘肃省教育厅创新基金(2022B-113) 【作者简介】刘潇霜,硕士研究生,研究方向:深度学习、医学图像处理,E-mail: 284385351@qq.com 【通信作者】张伟,副教授,硕士生导师,研究方向:医学信号处理、计算机仿真,E-mail: 4865354@qq.com
更新日期/Last Update: 2024-02-27