[1]万翠霞,陈湘光,杨志企,等.基于增强CT影像组学模型和临床特征模型评估进展期胃癌浆膜侵犯[J].中国医学物理学杂志,2023,40(12):1518-1522.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.010]
 WAN Cuixia,CHEN Xiangguang,et al.Development and validation of models to predict serosal invasion in advanced gastric cancer using the enhanced CT imaging-based radiomics features and clinical features[J].Chinese Journal of Medical Physics,2023,40(12):1518-1522.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.010]
点击复制

基于增强CT影像组学模型和临床特征模型评估进展期胃癌浆膜侵犯()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第12期
页码:
1518-1522
栏目:
医学影像物理
出版日期:
2023-12-27

文章信息/Info

Title:
Development and validation of models to predict serosal invasion in advanced gastric cancer using the enhanced CT imaging-based radiomics features and clinical features
文章编号:
1005-202X(2023)12-1518-05
作者:
万翠霞13陈湘光3杨志企3董婷4张胜3江桂华24
1.广东医科大学梅州临床医学院, 广东 梅州 514031; 2.广东医科大学,广东 湛江 524023; 3.梅州市人民医院(梅州市医学科学院)放射科, 广东 梅州 514031; 4.广东省第二人民医院影像科, 广东 广州 510317
Author(s):
WAN Cuixia1 3 CHEN Xiangguang3 YANG Zhiqi3 DONG Ting4 ZHANG Sheng3 JIANG Guihua2 4
1. Meizhou Clinical Medical College of Guangdong Medical University, Meizhou 514031, China 2.Guangdong Medical University, Zhanjiang 524023, China 3. Department of Radiology, Meizhou Peoples Hospital (Meizhou Academy of Medical Sciences), Meizhou 514031, China 4. Department of Radiology, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
关键词:
胃癌浆膜侵犯临床病理特征:影像组学特征CT
Keywords:
Keywords: gastric cancer serosal invasion clinicopathological feature radiomics feature CT
分类号:
R735.2;R816.5
DOI:
DOI:10.3969/j.issn.1005-202X.2023.12.010
文献标志码:
A
摘要:
目的:探讨基于增强CT影像组学模型和临床特征模型评估进展期胃癌浆膜侵犯的价值。方法:收集351例术前2周内行腹部增强CT检查进展期胃癌患者资料并以7:3比例随机分为训练组247例和验证组104例。基于动静脉期CT图像在A.K软件中共提取3 190个影像组学特征,通过降维筛选后建立影像组学模型,比较进展期胃癌浆膜侵犯阳性和阴性组之间的临床特征差异,并构建临床模型。模型效能评估采用受试者工作特征曲线分析。结果:在训练组和验证组中,N、M分期在浆膜侵犯阳性组和阴性组间的差异有统计意义(P<0.05)。基于动静脉期图像最终筛选出14个影像组学特征。在验证组中,影像组学模型预测进展期胃癌浆膜侵犯的诊断效能高于基于联合N分期和M分期构建临床模型的诊断效能(AUC:0.854 vs 0.793)。结论:基于增强CT影像组模型和基于N、M分期的临床模型均能够成功预测进展期胃癌浆膜侵犯,前者诊断效能较优。
Abstract:
Abstract: Objective To explore the predictive value of the enhanced CT imaging-based radiomics model and the clinical model for the serosal invasion in advanced gastric cancer. Methods The data were collected from 351 patients with advanced gastric cancer who underwent abdominal enhanced CT examination within 2 weeks before surgery, and the patients were randomly divided into a training group (n=247) and a validation group (n=104) in a ratio of 7:3. The 3 190 radiomics features which were extracted from the arterial and venous phase CT images using A.K software were dimensionally reduced for constructing a radiomics model. The pathological features between serosal invasion positive and negative groups were compared, and the significant features were used to establish a clinical model. The models performance was evaluated using receiver operating characteristic curve. Results In the training and validation groups, N staging and M staging were different in serosal invasion positive and negative groups (P<0.05). A total of 14 radiomic features were ultimately selected from the arterial and venous phase images. In the validation group, the diagnostic efficacy of the radiomic model for predicting serosal invasion in advanced gastric cancer was higher than that of the clinical model based on the combination of N staging and M staging (AUC: 0.854 vs 0.793). Conclusion Both the radiomics model based on the enhanced CT imaging and the clinical model based on the combination of N staging and M staging can successfully predict serosal invasion in advanced gastric cancer, but the former performs better.

相似文献/References:

[1]易伟松,刘文强,陆 东,等.高光谱成像结合化学计量学诊断胃癌组织[J].中国医学物理学杂志,2015,32(01):124.[doi:10.3969/j.issn.1005-202X.2015.01.028]
[2]宋威,赵迪,鹿红,等.胃癌术后调强放疗射野角度优化的剂量学[J].中国医学物理学杂志,2015,32(06):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
 [J].Chinese Journal of Medical Physics,2015,32(12):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
[3]易伟松,钱辉跃,江厚敏.光纤和显微拉曼光谱结合化学计量学鉴别胃癌组织[J].中国医学物理学杂志,2016,33(2):134.[doi:10.3969/j.issn.1005-202X.2016.02.006]
[4]卢晓光,刘细友,郑言宏,等.胃癌术后不同IMRT布野方式对剂量分布的影响[J].中国医学物理学杂志,2016,33(7):664.[doi:10.3969/j.issn.1005-202X.2016.07.004]
[5]刘光波,刘志坤,闫慧娟,等.不同照射技术在全胃癌放疗中的剂量学比较与分析[J].中国医学物理学杂志,2016,33(11):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
 [J].Chinese Journal of Medical Physics,2016,33(12):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
[6]蒋大振,刘晖,戴静,等. 胃癌调强放疗中多叶光栅3种状态的剂量学比较[J].中国医学物理学杂志,2019,36(2):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
 JIANG Dazhen,LIU Hui,DAI Jing,et al. Dosimetric comparison among split-field, fixed-jaw and rotating multi-leaf collimator in the radiotherapy of gastric carcinoma[J].Chinese Journal of Medical Physics,2019,36(12):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
[7]胡志纲,刘勇强,任建,等.胃癌术后不同布野方案对调强放疗剂量分布的影响[J].中国医学物理学杂志,2019,36(12):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
 HU Zhigang,LIU Yongqiang,REN Jian,et al.Effects of different field arrangements on the dose distribution of postoperative intensity-modulated radiotherapy for gastric cancer[J].Chinese Journal of Medical Physics,2019,36(12):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
[8]范显文,何二松,林昌荣,等.胃癌患者身体质量指数对腹腔镜术式选择及效果的影响[J].中国医学物理学杂志,2020,37(4):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
 FAN Xianwen,HE Ersong,LIN Changrong,et al.Effects of body mass index on the selection and efficacy of laparoscopic surgery in patients with gastric cancer[J].Chinese Journal of Medical Physics,2020,37(12):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
[9]赵呈陆,方志军,高永彬,等.基于改进型V-net卷积神经网络的胃壁分割方法[J].中国医学物理学杂志,2021,38(10):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
 ZHAO Chenglu,FANG Zhijun,GAO Yongbin,et al.Gastric wall segmentation based on improved V-net convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(12):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
[10]张育,赵轶峰,苏卓彬,等.基于卷积神经网络的胃癌癌前病变图像分类方法[J].中国医学物理学杂志,2022,39(2):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]
 ZHANG Yu,ZHAO Yifeng,SU Zhuobin,et al.Image classification of gastric precancerous lesions based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(12):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]

备注/Memo

备注/Memo:
【收稿日期】2023-08-14 【基金项目】广州市重大脑疾病分子功能影像与人工智能重点实验室项目(202201020373);梅州市社会发展科技计划项目(2022B17);梅州市人民医院培育项目(PY-C2022051) 【作者简介】万翠霞,主治医师,研究方向:影像医学与核医学,E-mail: 641874861@qq.com 【通信作者】江桂华,主任医师,博士生导师,研究方向:分子影像学、脑功能磁共振成像,E-mail: jianggh@gd2h.org.cn
更新日期/Last Update: 2023-12-27