[1]张思河,曹乐,王金玮,等.基于表面肌电信号的BiLSTM-SA双臂肌力估计[J].中国医学物理学杂志,2023,40(11):1383-1389.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.011]
 ZHANG Sihe,CAO Le,WANG Jinwei,et al.BiLSTM-SA model for muscle strength estimation from sEMG[J].Chinese Journal of Medical Physics,2023,40(11):1383-1389.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.011]
点击复制

基于表面肌电信号的BiLSTM-SA双臂肌力估计()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第11期
页码:
1383-1389
栏目:
医学信号处理与医学仪器
出版日期:
2023-11-24

文章信息/Info

Title:
BiLSTM-SA model for muscle strength estimation from sEMG
文章编号:
1005-202X(2023)11-1383-07
作者:
张思河曹乐王金玮徐浩洋张峰
上海工程技术大学电子电气工程学院, 上海 201620
Author(s):
ZHANG Sihe CAO Le WANG Jinwei XU Haoyang ZHANG Feng
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
关键词:
双向长短期记忆网络自注意力机制表面肌电信号独立成分分析
Keywords:
Keywords: bidirectional long short-term memory network self-attention mechanism surface electromyography signal independent component analysis
分类号:
R318;TP391.4
DOI:
DOI:10.3969/j.issn.1005-202X.2023.11.011
文献标志码:
A
摘要:
针对双臂协同连续变化下肌力估计精度低的问题,提出一种双向长短期记忆(BiLSTM)网络与自注意力(SA)机制相结合的肌力估计模型。首先,通过搭建肌力估计试验平台采集双臂肌肉等长收缩状态下的肌力与表面肌电信号,然后采用独立成分分析方法以及小波阈值去噪方法对采集数据进行预处理,提取信号的均方根作为特征值,最后利用BiLSTM-SA模型进行肌力估计。实验结果表明BiLSTM-SA模型在双臂等长收缩肌力估计中决定系数R2的平均值在0.97以上,表现出良好的肌力估计准确性。
Abstract:
A muscle strength estimation model incorporating bidirectional long short-term memory network (BiLSTM) and self-attention mechanism (SA) is presented for addressing the problem of low estimation accuracy caused by the continuous change of arms. After collecting the muscle strength and surface electromyography signal during isometric muscle contraction of arms with a self-developed platform, independent component analysis and wavelet threshold denoising are used to preprocess the collected signals. With the root-mean-square value of the extracted signals as the characteristic value, the muscle strength is estimated using BiLSTM-SA model. The experimental results show that BiLSTM-SA model has a high accuracy for muscle strength estimation, with an average value of R2 above 0.97 for the muscle strength estimation during isometric contraction.

相似文献/References:

[1]袁野,廖薇.基于双通道神经网络的疾病文本分类方法[J].中国医学物理学杂志,2021,38(5):655.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.025]
 YUAN Ye,LIAO Wei.Disease text classification model based on two-channel neural network[J].Chinese Journal of Medical Physics,2021,38(11):655.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.025]
[2]刘婕,王娆芬,邓源.基于心电信号的自注意力双向门控循环网络疲劳检测模型[J].中国医学物理学杂志,2022,39(5):578.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.010]
 LIU Jie,WANG Raofen,DENG Yuan.Self-attention BiGRU fatigue detection model based on ECG signal[J].Chinese Journal of Medical Physics,2022,39(11):578.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.010]
[3]顾国浩,龙英文,吉明明.U-Net改进及其在新冠肺炎图像分割的应用[J].中国医学物理学杂志,2022,39(8):1041.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
 GU Guohao,LONG Yingwen,JI Mingming.Improved U-Net and its application in COVID-19 image segmentation[J].Chinese Journal of Medical Physics,2022,39(11):1041.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
[4]师文博,杨环,西永明,等.基于自注意力的双通路全脊柱 X 光图像分割模型[J].中国医学物理学杂志,2022,39(11):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
 SHI Wenbo,YANG Huan,XI Yongming,et al.Self-attention based dual pathway network for spine segmentation in X-ray image[J].Chinese Journal of Medical Physics,2022,39(11):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
[5]姚远星,王飞,刘文涵,等.基于多分支融合神经网络的心电图导联重构方法[J].中国医学物理学杂志,2023,40(2):196.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.012]
 YAO Yuanxing,WANG Fei,LIU Wenhan,et al.ECG signal reconstruction based on multi-layer feature fusion using neural network[J].Chinese Journal of Medical Physics,2023,40(11):196.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.012]
[6]李盛青,苏前敏,黄继汉.基于BioBERT与BiLSTM的临床试验纳排标准命名实体识别[J].中国医学物理学杂志,2024,41(1):125.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.018]
 LI Shengqing,SU Qianmin,HUANG Jihan.Named entity recognition of eligibility criteria for clinical trials based on BioBERT and BiLSTM[J].Chinese Journal of Medical Physics,2024,41(11):125.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.018]

备注/Memo

备注/Memo:
【收稿日期】2023-08-28 【基金项目】国家自然科学基金(61703270) 【作者简介】张思河,硕士研究生,研究方向:生物信号采集与分析,E- mail: 18507050407@163.com 【通信作者】曹乐,博士,副教授,研究方向:惯性传感器、惯性导航定 位、微弱信号检测技术,E-mail: caole00012@163.com
更新日期/Last Update: 2023-11-24