相似文献/References:
[1]袁野,廖薇.基于双通道神经网络的疾病文本分类方法[J].中国医学物理学杂志,2021,38(5):655.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.025]
YUAN Ye,LIAO Wei.Disease text classification model based on two-channel neural network[J].Chinese Journal of Medical Physics,2021,38(11):655.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.025]
[2]刘婕,王娆芬,邓源.基于心电信号的自注意力双向门控循环网络疲劳检测模型[J].中国医学物理学杂志,2022,39(5):578.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.010]
LIU Jie,WANG Raofen,DENG Yuan.Self-attention BiGRU fatigue detection model based on ECG signal[J].Chinese Journal of Medical Physics,2022,39(11):578.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.010]
[3]顾国浩,龙英文,吉明明.U-Net改进及其在新冠肺炎图像分割的应用[J].中国医学物理学杂志,2022,39(8):1041.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
GU Guohao,LONG Yingwen,JI Mingming.Improved U-Net and its application in COVID-19 image segmentation[J].Chinese Journal of Medical Physics,2022,39(11):1041.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
[4]师文博,杨环,西永明,等.基于自注意力的双通路全脊柱 X 光图像分割模型[J].中国医学物理学杂志,2022,39(11):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
SHI Wenbo,YANG Huan,XI Yongming,et al.Self-attention based dual pathway network for spine segmentation in X-ray image[J].Chinese Journal of Medical Physics,2022,39(11):1385.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.011]
[5]姚远星,王飞,刘文涵,等.基于多分支融合神经网络的心电图导联重构方法[J].中国医学物理学杂志,2023,40(2):196.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.012]
YAO Yuanxing,WANG Fei,LIU Wenhan,et al.ECG signal reconstruction based on multi-layer feature fusion using neural network[J].Chinese Journal of Medical Physics,2023,40(11):196.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.012]
[6]李盛青,苏前敏,黄继汉.基于BioBERT与BiLSTM的临床试验纳排标准命名实体识别[J].中国医学物理学杂志,2024,41(1):125.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.018]
LI Shengqing,SU Qianmin,HUANG Jihan.Named entity recognition of eligibility criteria for clinical trials based on BioBERT and BiLSTM[J].Chinese Journal of Medical Physics,2024,41(11):125.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.018]