[1]李刚,高广帅,张珍珍,等.基于连续小波变换和高阶统计量的心律失常识别算法[J].中国医学物理学杂志,2024,41(3):365-374.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.015]
 LI Gang,GAO Guangshuai,ZHANG Zhenzhen,et al.Arrhythmia identification algorithm based on continuous wavelet transform and higher-order statistics[J].Chinese Journal of Medical Physics,2024,41(3):365-374.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.015]
点击复制

基于连续小波变换和高阶统计量的心律失常识别算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第3期
页码:
365-374
栏目:
医学信号处理与医学仪器
出版日期:
2024-03-27

文章信息/Info

Title:
Arrhythmia identification algorithm based on continuous wavelet transform and higher-order statistics
文章编号:
1005-202X(2024)03-0365-10
作者:
李刚1高广帅1张珍珍2巴任伟1李春雷1刘洲峰1
1.中原工学院电子信息学院, 河南 郑州 450007; 2.郑州人民医院郑东院区门诊部, 河南 郑州 450014
Author(s):
LI Gang1 GAO Guangshuai1 ZHANG Zhenzhen2 BA Renwei1 LI Chunlei1 LIU Zhoufeng1
1. School of Electronic and Information, Zhongyuan University of Technology, Zhengzhou 450007, China 2.Outpatient Department, East District Branch of Peoples Hospital of Zhengzhou, Zhengzhou 450014, China
关键词:
心律失常识别连续小波变换高阶统计量长短期记忆网络RR间隔
Keywords:
Keywords: arrhythmia identification continuous wavelet transform higher-order statistics long short-term memory RR interval
分类号:
R318;TP319
DOI:
DOI:10.3969/j.issn.1005-202X.2024.03.015
文献标志码:
A
摘要:
针对可变持续时间心电图(ECG)数据信号的非平稳性和时序性问题,提出一种基于连续小波变换(CWT)和高阶统计量(HOS)的心律失常识别算法。首先,针对可变持续时间ECG数据中每个样本的数据点数量不同,采用RR间期插值法预处理数据,并通过CWT将信号分解为不同的时频分量,从而使网络能够更好地提取心电信号中的时间和频率特征。其次,针对时序信息利用不充分的问题,提出基于HOS和长短期记忆网络的时序挖掘模块,以捕捉和学习ECG信号中的长期依赖关系,从而有助于识别和理解特定的心律失常类别。通过在公开的ECG数据集MIT-BIN上进行的大量实验,验证所提方法的有效性和优越性。
Abstract:
Abstract: Aiming at the non-stationarity and temporal characteristics of variable-length electrocardiogram (ECG) signals, an arrhythmia identification algorithm is proposed based on continuous wavelet transform and higher-order statistics. Considering the varying number of data points for each sample in variable-length ECG signals, the RR interval interpolation method is employed for data preprocessing, and the signal is decomposed into different time-frequency components using continuous wavelet transform, which enables the network to better extract both temporal and frequency features from the ECG signals. Regarding the issue of insufficient utilization of temporal information, a temporal mining module is introduced based on higher-order statistics and long short-term memory network to capture and learn long-term dependencies in the ECG signals, thereby facilitating the identification and understanding of specific arrhythmia categories. Extensive experiments conducted on the publicly available MIT-BIH ECG database validate the effectiveness and superiority of the proposed method.

备注/Memo

备注/Memo:
【收稿日期】2023-09-18 【基金项目】国家自然科学基金(62072489) 【作者简介】李刚,硕士,研究方向:基于深度学习的心电图信号处理与分类,E-mail: 1533585475@qq.com 【通信作者】李春雷,博士,教授,研究生导师,研究方向:计算机视觉及人工智能、图像处理与模式识别,E-mail: lichunlei1979@zut.edu.cn
更新日期/Last Update: 2024-03-27