[1]付俊泽,贾茜,李几雄,等.基于CT数据的肺部影像可视化系统设计[J].中国医学物理学杂志,2024,41(3):340-347.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.012]
 FU Junze,JIA Qian,LI Jixiong,et al.Design of a lung image visualization system based on CT data[J].Chinese Journal of Medical Physics,2024,41(3):340-347.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.012]
点击复制

基于CT数据的肺部影像可视化系统设计()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第3期
页码:
340-347
栏目:
医学影像物理
出版日期:
2024-03-27

文章信息/Info

Title:
Design of a lung image visualization system based on CT data
文章编号:
1005-202X(2024)03-0327-08
作者:
付俊泽贾茜李几雄张建敏
江汉大学人工智能学院, 湖北 武汉 430056
Author(s):
FU Junze JIA Qian LI Jixiong ZHANG Jianmin
School of Artificial Intelligence, Jianghan University, Wuhan 430056, China
关键词:
CT可视化三维重建医学图像
Keywords:
Keywords: lung CT visualization three-dimensional reconstruction medical image
分类号:
R318;TP317.4
DOI:
DOI:10.3969/j.issn.1005-202X.2024.03.012
文献标志码:
A
摘要:
设计一种基于CT数据的肺部影像二维可视化与三维重建系统,首先对DICOM图像进行解析,分割和标记出肺结节的位置;然后利用CT序列的重采样、面绘制的三维重建、形态学处理等技术,实现肺实质和结节的多视角、多分辨率三维显示;最后设计交互界面,包括图像增强、肺部二维可视化、结节勾勒、肺实质和结节三维重建、旋转、缩放切换视角等功能。实验表明,本系统对于二维图像的可视化和病灶区域勾勒位置清晰、准确,并使三维图像呈现的结节完整且光滑。本系统相较于已有的类似医学处理软件,大幅度提高重建和可视化效率,使医生能够更加快速、精确地观察三维图像,辅助疾病诊断和手术方案制定。
Abstract:
Abstract: A system for achieving two-dimensional (2D) visualization and three-dimensional (3D) reconstruction of lung images using CT data is designed. After DICOM image processing, and lung nodule segmentation and labeling, the multi-view and multi-resolution 3D display of lung parenchyma and nodules is realized using techniques such as resampling of CT sequences, 3D reconstruction based on surface rendering, and morphological processing. Finally, the interactive interface is designed for implementing the functions of image enhancement, 2D visualization, nodule delineation, 3D reconstructions of lung parenchyma and nodules, rotation, zooming and switching the viewpoint. Experimental results show that the system provides clear and accurate 2D image visualization and lesion delineation, while reconstructing nodules in the generated 3D images completely and smoothly. Compared with the existing similar medical processing software, the developed system substantially improves the reconstruction and visualization efficiencies, enabling doctors to observe 3D images more quickly and accurately, and assisting in disease diagnosis and surgical planning.

相似文献/References:

[1]庞皓文,孙小扬.基于快速自由形变的弹性配准算法在放疗CT中的应用[J].中国医学物理学杂志,2015,32(03):404.[doi:10.3969/j.issn.1005-202X.2015.03.023]
[2]梁 健.64排螺旋CT结肠成像技术诊断结直肠疾病的有效性分析[J].中国医学物理学杂志,2015,32(03):447.[doi:10.3969/j.issn.1005-202X.2015.03.033]
[3]程明渊,贺奇才,胡琴明,等.基于穿越长度权重迭代重建算法的研究[J].中国医学物理学杂志,2013,30(02):4012.[doi:10.3969/j.issn.1005-202X.2013.02.012]
[4]苌飞霸,尹军,何庆华,等.病理性肺音信号的分析识别方法[J].中国医学物理学杂志,2016,33(7):739.[doi:10.3969/j.issn.1005-202X.2016.07.020]
 [J].Chinese Journal of Medical Physics,2016,33(3):739.[doi:10.3969/j.issn.1005-202X.2016.07.020]
[5]刘婷婷,刘志强,欧阳水根,等.乳腺癌根治术后调强放射治疗下不同硅胶设置的肺组织剂量评估[J].中国医学物理学杂志,2016,33(11):1121.[doi:10.3969/j.issn.1005-202X.2016.11.008]
 [J].Chinese Journal of Medical Physics,2016,33(3):1121.[doi:10.3969/j.issn.1005-202X.2016.11.008]
[6]靳珍怡,王远军,聂生东. 梯度域三维头部PETCT图像融合[J].中国医学物理学杂志,2017,34(3):246.[doi:10.3969/j.issn.1005-202X.2017.03.006]
 [J].Chinese Journal of Medical Physics,2017,34(3):246.[doi:10.3969/j.issn.1005-202X.2017.03.006]
[7]王朝壮,王鑫,王恩敏,等. 不同厚度CT图像重建的DRR对射波刀治疗头部肿瘤精度的影响[J].中国医学物理学杂志,2017,34(9):882.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.005]
 [J].Chinese Journal of Medical Physics,2017,34(3):882.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.005]
[8]李慧君,王琳婧,周露,等. 自适应图像全变差约束的有限角度CT重建算法[J].中国医学物理学杂志,2018,35(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.010]
 LI Huijun,WANG Linjing,ZHOU Lu,et al. An adaptive total p variation-constrained CT image reconstruction method for limited angle data[J].Chinese Journal of Medical Physics,2018,35(3):420.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.010]
[9]冯庆,戴敏,马华怡,等. 恶性血液系统疾病患者肝脏真菌感染的CT表现[J].中国医学物理学杂志,2018,35(5):549.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.010]
 FENG Qing,DAI Min,MA Huayi,et al. CT characteristics of hepatic fungal infections in patients with malignant hematological diseases[J].Chinese Journal of Medical Physics,2018,35(3):549.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.010]
[10]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(3):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[11]徐亚楠,赵伟,李铭,等. 基于支持向量机的肺CT图像三维磨玻璃结节的提取和识别[J].中国医学物理学杂志,2019,36(4):425.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.011]
 XU Yanan,ZHAO Wei,LI Ming,et al.Support vector machine-based algorithm for the extraction and recognition of ground glass nodules in lung CT image[J].Chinese Journal of Medical Physics,2019,36(3):425.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.011]

备注/Memo

备注/Memo:
【收稿日期】2023-09-11 【基金项目】武汉市科技计划项目(2020020601012320) 【作者简介】付俊泽,研究方向:图像处理、计算机视觉,E-mail: edia2536@163.com
更新日期/Last Update: 2024-03-27