相似文献/References:
[1]唐思源,刘燕茹,杨敏,等.基于CT图像的肺结节检测与识别[J].中国医学物理学杂志,2019,36(7):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
TANG Siyuan,LIU Yanru,YANG Min,et al.Detection and recognition of pulmonary nodules based on CT images[J].Chinese Journal of Medical Physics,2019,36(12):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
[2]张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
ZHANG Qianwen,CHEN Ming,QIN Yufang,et al.Lung nodule segmentation based on 3D ResUnet network[J].Chinese Journal of Medical Physics,2019,36(12):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
[3]曹宇,邢素霞,逄键梁,等.基于改进的VGG-16卷积神经网络的肺结节检测[J].中国医学物理学杂志,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
CAO Yu,XING Suxia,PANG Jianliang,et al.Detection of pulmonary nodules based on improved VGG-16 convolution neural network[J].Chinese Journal of Medical Physics,2020,37(12):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
[4]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(12):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[5]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(12):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
[6]王新宇,赵静文,刘翔,等.人工智能在肺结节筛查和肺癌诊断中的应用[J].中国医学物理学杂志,2023,40(9):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
WANG Xinyu,ZHAO Jingwen,LIU Xiang,et al.Applications of artificial intelligence in lung nodule detection and lung cancer diagnosis[J].Chinese Journal of Medical Physics,2023,40(12):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
[7]温帆,杨萍,张鑫,等.基于特征增强的多分支U-Net肺结节分割[J].中国医学物理学杂志,2023,40(11):1343.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.005]
WEN Fan,YANG Ping,ZHANG Xin,et al.Pulmonary nodule segmentation using multi-branch U-Net based on feature enhancement[J].Chinese Journal of Medical Physics,2023,40(12):1343.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.005]
[8]米吾尔依提·海拉提,热娜古丽·艾合麦提尼亚孜,卡迪力亚·库尔班,等.基于改进YOLOv7的肝囊型包虫病超声图像小病灶检测[J].中国医学物理学杂志,2024,41(3):299.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.006]
HAILATI Miwueryiti,AIHEMAITINIYAZI Renaguli,KUERBAN Kadiliya,et al.Small lesion detection in ultrasound images of hepatic cystic echinococcosis based on improved YOLOv7[J].Chinese Journal of Medical Physics,2024,41(12):299.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.006]
[9]牛树国,周福兴,颜克松,等.不同CT阈值下实性成分占比对小肺癌浸润性预测的影响[J].中国医学物理学杂志,2024,41(3):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
NIU Shuguo,ZHOU Fuxing,YAN Kesong,et al.Predictive value of consolidation/tumor ratio at different CT thresholds for invasiveness in small lung cancer[J].Chinese Journal of Medical Physics,2024,41(12):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
[10]丛玉林,徐小虎,沈春林,等.基于CT特征构建预测肺结节良恶性的机器学习模型[J].中国医学物理学杂志,2024,41(10):1315.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.017]
CONG Yulin,XU Xiaohu,SHEN Chunlin,et al.Machine learning model predicts benign and malignant pulmonary nodules based on CT features[J].Chinese Journal of Medical Physics,2024,41(12):1315.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.017]