相似文献/References:
[1]蒋杰伟,雷舒陶,耿苗苗,等.融合可解释性特征的糖尿病视网膜病变自动诊断[J].中国医学物理学杂志,2022,39(5):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]
JIANG Jiewei,LEI Shutao,GENG Miaomiao,et al.Automatic diagnosis of diabetic retinopathy based on interpretable features fusion[J].Chinese Journal of Medical Physics,2022,39(8):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]
[2]申思源,罗冬梅.糖尿病视网膜病变的风险揭示与关键因素分析[J].中国医学物理学杂志,2022,39(6):783.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.021]
SHEN Siyuan,LUO Dongmei.Risk disclosure and key factors analysis of diabetic retinopathy[J].Chinese Journal of Medical Physics,2022,39(8):783.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.021]
[3]杨东旭,赵红东,耿立新,等.双线性非局部特征结合中继监督网络用于视网膜血管分割[J].中国医学物理学杂志,2022,39(12):1516.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.010]
YANG Dongxu,ZHAO Hongdong,GENG Lixin,et al.Bilinear non-local features combined with intermediate supervision network for retinal vessel segmentation[J].Chinese Journal of Medical Physics,2022,39(8):1516.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.010]
[4]王志鲁,池越,周亚同,等.融合密集空洞注意力金字塔和多尺度的视网膜病变分割[J].中国医学物理学杂志,2024,41(8):1000.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.013]
WANG Zhilu,CHI Yue,ZHOU Yatong,et al.Diabetic retinopathy segmentation using dense dilated attention pyramid and multi-scale features[J].Chinese Journal of Medical Physics,2024,41(8):1000.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.013]
[5]王文静,张莉钏,王欣,等.融合改进Retinex图像增强与深度学习的糖尿病视网膜分类检测方法[J].中国医学物理学杂志,2024,41(9):1086.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.005]
WANG Wenjing,ZHANG Lichuan,WANG Xin,et al.Classification and detection method for diabetic retinopathy based on the combination of improved Retinex image enhancement and deep learning[J].Chinese Journal of Medical Physics,2024,41(8):1086.[doi:DOI:10.3969/j.issn.1005-202X.2024.09.005]