[1]张瑞芳,梁永波,崔谋,等.结合多模态融合方式的脉搏波房颤识别[J].中国医学物理学杂志,2023,40(10):1260-1269.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.013]
 ZHANG Ruifang,LIANG Yongbo,,et al.Multimodal fusion approach to detect atrial fibrillation using PPG[J].Chinese Journal of Medical Physics,2023,40(10):1260-1269.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.013]
点击复制

结合多模态融合方式的脉搏波房颤识别()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第10期
页码:
1260-1269
栏目:
医学信号处理与医学仪器
出版日期:
2023-10-27

文章信息/Info

Title:
Multimodal fusion approach to detect atrial fibrillation using PPG
文章编号:
1005-202X(2023)10-1260-10
作者:
张瑞芳1梁永波123崔谋1陈真诚123
1.桂林电子科技大学生命与环境科学学院, 广西 桂林 541004; 2.广西高校生物医学传感及智能仪器重点实验室, 广西 桂林 541004; 3.广西人体生理信息无创检测工程技术研究中心, 广西 桂林 541004
Author(s):
ZHANG Ruifang1 LIANG Yongbo1 2 3 CUI Mou1 CHEN Zhencheng1 2 3
1. School of Life and Environmental Sciences, GuiLin University of Electronic Technology, GuiLin 541004, China 2. Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin 541004, China 3. Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin 541004, China
关键词:
心房颤动深度学习脉搏波Resnet-CBAM格拉姆角场
Keywords:
atrial fibrillation deep learning pulse wave Resnet-CBAM Gramian angular field
分类号:
1005-202X(2023)10-1260-10
DOI:
DOI:10.3969/j.issn.1005-202X.2023.10.013
文献标志码:
A
摘要:
针对心房颤动疾病诊断检测复杂,病理检查有创等问题,构建基于脉搏波与深度学习的心房颤动分类预测模型,实现对心房颤动疾病的准确预测。首先,通过脉搏波设备采集数据,与MIMIC-III数据库数据共同构建PPG-AF数据集;其次,基于Pytorch深度学习框架构建用于房颤分类的ResNet-CBAM-1DCNN双通道卷积神经网络;最后,将数据集按照8:1:1的比例划分为训练集,验证集和测试集,将脉搏波和其对应的格拉姆角场图作为输入,通过对网络结构和超参数的优化,在测试集中分类的F1分数达到了97.30%,准确度达到98.12%。本研究基于脉搏波信号与双通道卷积神经网络模型,能够实现对心房颤动疾病的准确诊断,有望为临床医师制定最佳治疗决策提供重要依据。
Abstract:
To address the problems in diagnosis and detection of atrial fibrillation (AF) and invasive pathological examination, a model for AF classification based on pulse waves and deep learning is constructed to realize the accurate prediction of AF. The data collected from the photoplethysmography (PPG) acquisition device and the MIMIC-III database data are used to establish PPG-AF dataset, and a ResNet-CBAM-1DCNN dual-channel convolutional neural network for AF classification is constructed based on the Pytorch deep learning framework. The established dataset is divided into a training set, a validation set and a test set in a ratio of 8:1:1. The PPG and its corresponding Gramian angular field map are taken as input. After the optimization of network structure and hyperparameters, the proposed model obtains a F1 score of 97.30% in the test set, and has an accuracy of 98.12% for AF classification. The multimodal fusion approach based on PPG and dual-channel convolutional neural network can achieve the accurate diagnosis of AF, which is expected to provide an important basis for decision-making in clinic.

相似文献/References:

[1]虞康惠,江桂华,成官迅.多层螺旋CT肺静脉成像在房颤射频消融术中的应用价值[J].中国医学物理学杂志,2016,33(5):515.[doi:10.3969/j.issn.1005-202X.2016.05.017]
 [J].Chinese Journal of Medical Physics,2016,33(10):515.[doi:10.3969/j.issn.1005-202X.2016.05.017]
[2]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(10):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(10):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(10):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(10):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(10):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(10):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[8]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(10):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[9]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(10):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[10]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(10):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[11]方东申,叶琪瑶,石少波,等.基于心电长时RR间期序列的心房颤动检测[J].中国医学物理学杂志,2023,40(8):1009.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.014]
 FANG Dongshen,YE Qiyao,SHI Shaobo,et al.Atrial fibrillation detection based on long-term RR interval sequences of electrocardiogram[J].Chinese Journal of Medical Physics,2023,40(10):1009.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.014]

备注/Memo

备注/Memo:
【收稿日期】2023-05-23 【基金项目】国家自然科学基金(61627807,62101148);广西自然科学基金(2020GXNSFBA297156);广西创新驱动发展专项(Guike AA19254003) 【作者简介】张瑞芳,硕士研究生,研究方向:生物医学电子与仪器, E-mail: zhang15138277223@163.com 【通信作者】陈真诚,教授,博士生导师,研究方向:生物传感与智能仪器,E-mail: chenzhcheng@163.com
更新日期/Last Update: 2023-10-27