[1]林嘉豪,王瑜,肖洪兵,等.LRAE-Unet:轻量级MRI脑肿瘤全自动分割网络[J].中国医学物理学杂志,2024,41(1):43-49.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.006]
 LIN Jiahao,WANG Yu,XIAO Hongbing,et al.LRAE-Unet: a lightweight network for fully automatic segmentation of brain tumor from MRI[J].Chinese Journal of Medical Physics,2024,41(1):43-49.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.006]
点击复制

LRAE-Unet:轻量级MRI脑肿瘤全自动分割网络()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第1期
页码:
43-49
栏目:
医学影像物理
出版日期:
2024-01-23

文章信息/Info

Title:
LRAE-Unet: a lightweight network for fully automatic segmentation of brain tumor from MRI
文章编号:
1005-202X(2024)01-0043-07
作者:
林嘉豪王瑜肖洪兵孙梅
北京工商大学人工智能学院, 北京 100048
Author(s):
LIN Jiahao WANG Yu XIAO Hongbing SUN Mei
School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
关键词:
脑肿瘤LRAE-Unet轻量级残差模块轻量级自注意力模块平均池化模块
Keywords:
Keywords: brain tumor LRAE-Unet lightweight residual module lightweight self-attention module average pooling module
分类号:
R318;TP317.4
DOI:
DOI:10.3969/j.issn.1005-202X.2024.01.006
文献标志码:
A
摘要:
提出一种轻量级脑肿瘤全自动分割网络,即轻量级残差注意力增强网络(LRAE-Unet)。首先采用轻量级残差模块解决网络层数增加时出现的梯度消失和网络退化问题;其次采用轻量级自注意力模块抑制输入图像中的不相关区域,同时突出特定局部区域的显著特征;最后通过增强视野平均池化模块减少特征图的空间,节省计算资源,控制网络过拟合现象。在BraTS 2019数据集的测试结果显示LRAE-Unet在完整肿瘤、肿瘤核心与增强肿瘤区域的Dice相似系数为91.24%、88.64%与88.32%,证明使用LRAE-Unet进行脑瘤分割具有可行性与有效性。
Abstract:
Abstract: A lightweight residual attention enhanced Unet (LRAE-Unet) is designed for the fully automatic brain tumor segmentation. LRAE-Unet uses lightweight residual module to solve the problems of gradient disappearance and network degradation when the network layers increases, lightweight self-attention module to suppress the irrelevant areas and highlight the significant features of specific local areas, and enhanced average pooling module with a larger field of perception to reduce the space of feature map, save computing resources and avoid over-fitting. The experiment on BraTS 2019 dataset shows that the proposed method has a Dice similarity coefficient of 91.24%, 88.64% and 88.32% in the segmentations of the whole tumor, tumor core and enhanced tumor, which proves its feasibility and effectiveness for brain tumor segmentation.

相似文献/References:

[1]王晓飞,聂生东,王远军,等.基于MRI的脑肿瘤计算机辅助检测技术研究进展[J].中国医学物理学杂志,2014,31(01):4635.[doi:10.3969/j.issn.1005-202X.2014.01.010]
[2]万俊,聂生东,王远军,等.基于MRI的脑肿瘤分割技术研究进展[J].中国医学物理学杂志,2013,30(04):4266.[doi:10.3969/j.issn.1005-202X.2013.04.013]
[3]赖胜圣,刘虔铖,张刚平.基于模糊C均值自动随机游走算法在脑肿瘤分割中的应用[J].中国医学物理学杂志,2015,32(05):707.[doi:doi:10.3969/j.issn.1005-202X.2015.05.021]
[4]谷珊珊,张怀文,王运来.基于水平集稳健特征统计算法的脑肿瘤自动分割研究[J].中国医学物理学杂志,2016,33(1):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
 [J].Chinese Journal of Medical Physics,2016,33(1):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
[5]徐艳红,张晋建,黎静,等.影像增强剂对脑瘤螺旋断层放疗剂量计算的影响[J].中国医学物理学杂志,2016,33(8):757.[doi:10.3969/j.issn.1005-202X.2016.08.001]
 [J].Chinese Journal of Medical Physics,2016,33(1):757.[doi:10.3969/j.issn.1005-202X.2016.08.001]
[6]宋婷婷,盛晓芳,汪洋,等.Compass剂量验证系统在VMAT脑肿瘤瘤床同步追量中的应用[J].中国医学物理学杂志,2016,33(10):1012.[doi:10.3969/j.issn.1005-202X.2016.10.008]
 [J].Chinese Journal of Medical Physics,2016,33(1):1012.[doi:10.3969/j.issn.1005-202X.2016.10.008]
[7]薛彩强,柯晓艾,邓娟,等.MRI征象鉴别IDH-1突变型与野生型较低级别胶质瘤[J].中国医学物理学杂志,2020,37(11):1384.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.008]
 XUE Caiqiang,,et al.MRI signs in differentiation of IDH-1 mutant type and wild type of lower-grade gliomas[J].Chinese Journal of Medical Physics,2020,37(1):1384.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.008]
[8]方新林,方艳红,王迪.基于多模态特征融合的脑瘤图像分割方法[J].中国医学物理学杂志,2022,39(6):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
 FANG Xinlin,FANG Yanhong,WANG Di.Brain tumor image segmentation method based on multi-modal feature fusion[J].Chinese Journal of Medical Physics,2022,39(1):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
[9]王佳琦,崔勇,栾琨,等.双时相PET CT扫描在脑肿瘤的诊断价值[J].中国医学物理学杂志,2023,40(2):157.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.005]
 WANG Jiaqi,CUI Yong,LUAN Kun,et al.[J].Chinese Journal of Medical Physics,2023,40(1):157.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.005]
[10]田恒屹,肖洪兵,计亚荣,等.基于三维UNet与混合焦点损失函数的脑肿瘤全自动分割算法[J].中国医学物理学杂志,2023,40(9):1114.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.009]
 TIAN Hengyi,XIAO Hongbing,JI Yarong,et al.Fully automatic segmentation algorithm of brain tumor based on three-dimensional UNet and hybrid focal loss function[J].Chinese Journal of Medical Physics,2023,40(1):1114.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.009]

备注/Memo

备注/Memo:
【收稿日期】2023-09-05 【基金项目】北京市自然科学基金-北京市教育委员会科技计划重点项目(KZ202110011015) 【作者简介】林嘉豪,硕士研究生,研究方向:图像处理与模式识别,E-mail: Radiant_master@163.com 【通信作者】王瑜,博士,教授,研究方向:图像处理与模式识别,E-mail: wangyu@btbu.edu.cn
更新日期/Last Update: 2024-01-23