[1]游慧霞,张怀岺.深度学习和影像组学在脑胶质瘤诊疗中的研究进展[J].中国医学物理学杂志,2023,40(12):1502-1508.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]
 YOU Huixia,ZHANG Huailing.Deep learning and radiomics in diagnosis and treatment of glioma: a review[J].Chinese Journal of Medical Physics,2023,40(12):1502-1508.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]
点击复制

深度学习和影像组学在脑胶质瘤诊疗中的研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第12期
页码:
1502-1508
栏目:
医学影像物理
出版日期:
2023-12-27

文章信息/Info

Title:
Deep learning and radiomics in diagnosis and treatment of glioma: a review
文章编号:
1005-202X(2023)12-1502-07
作者:
游慧霞1张怀岺2
1.广东医科大学医学技术学院, 广东 东莞 523808; 2.广东医科大学生物医学工程学院, 广东 东莞 523808
Author(s):
YOU Huixia1 ZHANG Huailing2
1. School of Medical Technology, Guangdong Medical University, Dongguan 523808, China 2. School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
关键词:
脑胶质瘤深度学习影像组学综述
Keywords:
Keywords: glioma deep learning radiomics review
分类号:
R318;R739.41
DOI:
DOI:10.3969/j.issn.1005-202X.2023.12.008
文献标志码:
A
摘要:
深度学习能从图像数据中自动学习代表性的影像特征应用于图像分析,如脑胶质瘤分期/分级、分子标志物状态预测、肿瘤假性进展与真实进展鉴别和生存预测等。影像组学旨在从常规医学图像中提取影像学特征来定量描述肿瘤,捕捉组织和病变微小的变化,如肿瘤体积内的异质性、肿瘤形状以及其在连续成像中随时间的变化。基于影像组学和深度学习的图像分析技术可以实现脑胶质瘤诊疗步骤的简化和自动化,具有较高的准确性。本研究对深度学习技术及影像组学方法进行概述,对近几年深度学习技术及影像组学方法在脑胶质瘤诊疗中的应用进行综述,以期为脑胶质瘤患者临床治疗方案选取提供术前依据。
Abstract:
Deep learning can automatically learn representative features from image data for clinical analysis, such as glioma staging/grading, prediction of molecular marker status, differentiation of tumor pseudoprogression from true progression, and survival prediction. Radiomics aims to quantitatively describe tumors based on imaging features extracted from routine medical images, and it can capture small changes in tissues and lesions, such as heterogeneity within tumor volume, tumor shape, and their changes over time during serial imaging. Image analysis technology based on radiomics and deep learning can simplify and automate the diagnosis and treatment of glioma, with high accuracy. The review gives a brief introduction of radiomics methods and deep learning technologies, and then summarizes the application of radiomics methods and deep learning technologies in the diagnosis and treatment of glioma in recent years, expecting to provide a preoperative basis for the treatment scheme selection for glioma patients.

相似文献/References:

[1]周 钢,田 野,陆雪官,等.同步加量技术应用于脑胶质瘤术后调强放疗的剂量学研究[J].中国医学物理学杂志,2014,31(02):4727.[doi:10.3969/j.issn.1005-202X.2014.02.002]
[2]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(12):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(12):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(12):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(12):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]戴红娅,黄江华,陈露,等. RapidArc和IMRT在脑胶质瘤术后放疗中保护海马的剂量学比较[J].中国医学物理学杂志,2018,35(12):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
 DAI Hongya,HUANG Jianghua,CHEN Lu,et al. Dosimetric comparison of RapidArc and IMRT in hippocampus sparing during postoperative radiotherapy for glioma[J].Chinese Journal of Medical Physics,2018,35(12):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
[7]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(12):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[8]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(12):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(12):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]郭飞宝.高分级脑胶质瘤4种同步加量调强放射治疗的剂量学分析[J].中国医学物理学杂志,2019,36(12):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
 GUO Feibao.Dosimetric analysis of 4 types of simultaneous integrated boost radiotherapy for high-grade glioma[J].Chinese Journal of Medical Physics,2019,36(12):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
[11]段欢欢,李书舟,曹瑛,等.基于深度学习方法预测IMRT计划射野的γ通过率[J].中国医学物理学杂志,2021,38(6):677.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
 . School of Nuclear Science and Technology,University of South China,Hengyang 00,et al.Predicting gamma passing rates for intensity-modulated radiotherapy fields based on deep learning method[J].Chinese Journal of Medical Physics,2021,38(12):677.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
[12]计亚荣,王瑜,肖洪兵,等.基于TensorMixup的脑胶质瘤全自动分割[J].中国医学物理学杂志,2022,39(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]
 JI Yarong,WANG Yu,XIAO Hongbing,et al.Fully automated glioma segmentation based on TensorMixup[J].Chinese Journal of Medical Physics,2022,39(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]

备注/Memo

备注/Memo:
【收稿日期】2023-08-03 【基金项目】广东省科技计划重点项目(2020B1515120046) 【作者简介】游慧霞,硕士,研究方向:脑胶质瘤的生存预后,E-mail: yhx18707978630@163.com 【通信作者】张怀岺,教授,研究方向:医学人工智能,E-mail: huailing@163.com
更新日期/Last Update: 2023-12-27