相似文献/References:
[1]陆宏伟,钟高艳,龙芋帆,等. 全数据库评估概率密度函数法利用R-R间期检测房颤精度[J].中国医学物理学杂志,2018,35(3):333.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.016]
LU Hongwei,ZHONG Gaoyan,LONG Yufan,et al. Evaluation of the precision of probability density function method using R-R intervals for detecting atrial fibrillation from the whole MIT-BIH arrhythmia database[J].Chinese Journal of Medical Physics,2018,35(1):333.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.016]
[2]王凯,杨枢,李超. 一种基于ECG的多层共轭对称Hadamard特征变换的房颤异常信号分类方法[J].中国医学物理学杂志,2019,36(9):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
WANG Kai,YANG Shu,LI Chao. ECG-based multi-level conjugate symmetric Hadamard feature transformation for classification of abnormal signals of atrial fibrillation[J].Chinese Journal of Medical Physics,2019,36(1):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
[3]蔚文婧,王寻,张鹏远,等.一种基于多层感知器的房颤心电图检测方法[J].中国医学物理学杂志,2020,37(3):332.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]
WEI Wenjing,WANG Xun,ZHANG Pengyuan,et al.Multilayer perceptron-based method for atrial fibrillation ECG detection[J].Chinese Journal of Medical Physics,2020,37(1):332.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]