[1]杨鸿玺,高安康,王一达,等.基于影像组学和多序列MRI的胶质瘤相关癫痫预测[J].中国医学物理学杂志,2023,40(11):1350-1355.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.006]
 YANG Hongxi,GAO Ankang,WANG Yida,et al.Prediction of glioma-associated epilepsy based on radiomics and multi-sequence MRI[J].Chinese Journal of Medical Physics,2023,40(11):1350-1355.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.006]
点击复制

基于影像组学和多序列MRI的胶质瘤相关癫痫预测()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第11期
页码:
1350-1355
栏目:
医学影像物理
出版日期:
2023-11-24

文章信息/Info

Title:
Prediction of glioma-associated epilepsy based on radiomics and multi-sequence MRI
文章编号:
1005-202X(2023)11-1350-06
作者:
杨鸿玺1高安康2王一达1白洁2张勇2程敬亮2杨光1
1.华东师范大学物理与电子科学学院上海市磁共振重点实验室, 上海 200062; 2.郑州大学第一附属医院磁共振科, 河南 郑州 450000
Author(s):
YANG Hongxi1 GAO Ankang2 WANG Yida1 BAI Jie2 ZHANG Yong2 CHENG Jingliang2 YANG Guang1
1. Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China 2. Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
关键词:
胶质瘤相关癫痫磁共振成像影像组学
Keywords:
Keywords: glioma-associated epilepsy magnetic resonance imaging radiomics
分类号:
R318;R739.41
DOI:
DOI:10.3969/j.issn.1005-202X.2023.11.006
文献标志码:
A
摘要:
基于多序列MRI建立无侵入性、准确、客观的胶质瘤相关癫痫诊断模型。回顾性地收集403例胶质瘤患者的T1WI、T2WI、T1Gd和T2-FLAIR图像。使用预训练的深度学习模型分割包含胶质瘤及瘤周水肿的感兴趣区域,从中提取一阶统计学特征、形态学特征和纹理特征。采用皮尔逊相关系数、递归特征消除等方法进行特征筛选,并将特征分类建立子模型,最终建立含有15个特征的影像模型用于癫痫诊断,在独立测试集上获得0.836的AUC值。在影像模型的基础上加入年龄及性别进行重新建模,获得含有14个特征的临床-影像模型,在独立测试集上获得0.872的AUC值。结合基本临床信息和多序列MRI影像特征的组学模型可以作为胶质瘤相关癫痫的有效诊断工具。
Abstract:
Abstract: A non-invasive, accurate and objective model is developed based on multi-sequence MRI for diagnosing glioma-associated epilepsy. The T1WI, T2WI, T1Gd and T2-FLAIR images of 403 glioma patients are collected retrospectively. A pre-trained deep learning model is used to segment the region of interest containing the tumor and peritumoral edema, from which the first-order statistical characteristics, morphological features and texture features are extracted. After feature selection using Pearson correlation coefficient, recursive feature elimination and other methods, a scout model is built for each group of features, and finally a radiomics model containing 15 features is established for epilepsy diagnosis. The radiomics model achieves an AUC of 0.836 on the independent test set. A clinical-radiomics model containing 14 features is further built by incorporating basic clinical information (age and gender) to the radiomics model for remodeling, and it achieves an AUC of 0.872 on the independent test set. The model combining basic clinical information and multi-sequence MRI radiomics signatures can serve as an effective tool for the diagnosis of glioma-associated epilepsy.

相似文献/References:

[1]王水花,张煜东.压缩感知磁共振成像技术综述[J].中国医学物理学杂志,2015,32(02):158.[doi:10.3969/j.issn.1005-202X.2015.02.002]
[2]马海涵,游 箭,唐文国,等.成人小脑髓母细胞瘤MR成像和NSE表达水平[J].中国医学物理学杂志,2015,32(02):207.[doi:10.3969/j.issn.1005-202X.2015.02.012]
[3]武 杰,袁航英,严 峻,等.医用核磁共振成像设备的风险因素分析与管理[J].中国医学物理学杂志,2014,31(03):4918.[doi:10.3969/j.issn.1005-202X.2014.03.016]
[4]张煜东,王水花.磁共振成像加速方法[J].中国医学物理学杂志,2014,31(04):5015.[doi:10.3969/j.issn.1005-202X.2014.04.010]
[5]万俊,聂生东,王远军,等.基于MRI的脑肿瘤分割技术研究进展[J].中国医学物理学杂志,2013,30(04):4266.[doi:10.3969/j.issn.1005-202X.2013.04.013]
[6]曾雁冰,张战胜,辛学刚,等.反演法在磁共振射频场设计与优化中的应用[J].中国医学物理学杂志,2013,30(04):4272.[doi:10.3969/j.issn.1005-202X.2013.04.014]
[7]赵 琳,张军,张新宇,等.CT和MRI诊断脑神经胶质瘤52例分析[J].中国医学物理学杂志,2015,32(04):464.[doi:10.3969/j.issn.1005-202X.2015.04.003]
 [J].Chinese Journal of Medical Physics,2015,32(11):464.[doi:10.3969/j.issn.1005-202X.2015.04.003]
[8]赵 琳,张军,张新宇,等.CT和MRI诊断脑神经胶质瘤52例分析[J].中国医学物理学杂志,2015,32(04):464.[doi:10.3969/j.issn.1005-202X.2015.04.003]
[9]骆众星,石健强,谢斯栋,等.T1 FLAIR PROPELLER序列在3.0T磁共振颅脑增强成像上对抑制各种伪影的应用[J].中国医学物理学杂志,2015,32(06):878.[doi:doi:10.3969/j.issn.1005-202X.2015.06.025]
 [J].Chinese Journal of Medical Physics,2015,32(11):878.[doi:doi:10.3969/j.issn.1005-202X.2015.06.025]
[10]管春,朱庆永.参考制导的压缩感知快速磁共振重建方法[J].中国医学物理学杂志,2016,33(3):217.[doi:10.3969/j.issn.1005-202X.2016.03.001]

备注/Memo

备注/Memo:
【收稿日期】2023-07-20 【基金项目】国家自然科学基金(61731009) 【作者简介】杨鸿玺,硕士研究生,研究方向:医学图像处理,E-mail: yanghongxi021@foxmail.com 【通信作者】杨光,副研究员,研究方向:医学图像处理,E-mail: gyang@phy.ecnu.edu.cn
更新日期/Last Update: 2023-11-24