[1]陆嘉文,陈始圆,袁履凡,等.基于Matlab深度学习的智能听诊系统应用程序开发[J].中国医学物理学杂志,2023,40(5):602-608.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.013]
 LU Jiawen,CHEN Shiyuan,YUAN Lüfan,et al.Application development of intelligent auscultation system based on Matlab deep learning[J].Chinese Journal of Medical Physics,2023,40(5):602-608.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.013]
点击复制

基于Matlab深度学习的智能听诊系统应用程序开发()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第5期
页码:
602-608
栏目:
医学信号处理与医学仪器
出版日期:
2023-05-26

文章信息/Info

Title:
Application development of intelligent auscultation system based on Matlab deep learning
文章编号:
1005-202X(2023)05-0602-07
作者:
陆嘉文1陈始圆2袁履凡1陈扶明3谢长勇4李川涛5
1.上海理工大学健康科学与工程学院, 上海 200093; 2.海军军医大学海军特色医学中心航空医学研究室, 上海 200433; 3.中国人民解放军联勤保障部队第940医院医学工程科, 甘肃 兰州 730050; 4.海军军医大学海军特色医学中心医研部, 上海 200433; 5.海军军医大学海军特色医学中心航空生理心理训练队, 上海 200433
Author(s):
LU Jiawen1 CHEN Shiyuan2 YUAN Lüfan1 CHEN Fuming3 XIE Changyong4 LI Chuantao5
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Department of Aviation Medicine, Naval Medical Center, Naval Medical University, Shanghai 200433, China 3. Department of Medical Engineering, 940 Hospital of the Joint Service Support Force of the Peoples Liberation Army, Lanzhou 730050, China 4. Medical Research Department, Naval Medical Center, Naval Medical University, Shanghai 200433, China 5. Aviation Physiological and Psychological Training Team, Naval Medical Center, Naval Medical University, Shanghai 200433, China
关键词:
深度学习APP Designer可视化听诊谷歌网络
Keywords:
Keywords: deep learning APP Designer visualization auscultation GoogLeNet
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2023.05.013
文献标志码:
A
摘要:
提出一种基于Matlab APP Designer的深度学习智能听诊软件系统,该软件系统配套隔离式无线电子听诊设备与内置的谷歌网络深度学习模型,实现了对患者心肺音的可视化听诊、听诊数据的存储、呼吸音的智能分类、远程听诊与教学听诊,并在医院进行了试用。试用结果表明该软件操作简单,心肺音数据显示清晰,在医院及医疗条件薄弱单位具有很强的实用价值和应用推广前景。
Abstract:
Abstract: A deep learning intelligent auscultation software system based on Matlab APP Designer is developed. The software system is equipped with isolated wireless electronic auscultation equipment and built-in GoogLeNet model to realize the visualization auscultation of heart and lung sounds, storage of auscultation data, intelligent classification of breath sounds, remote auscultation and teaching of auscultation. The trial results show that the software is easy to operate, can clearly display heart and lung sound data, and has high practical value and application prospects in hospitals and units with poor medical resources.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(5):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(5):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(5):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(5):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(5):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(5):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(5):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(5):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(5):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(5):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2023-01-10 【基金项目】国家自然科学基金(61901515);海军特色医学中心抗疫专项基金(20M0201);海军军医大学军民融合专项基金(21X0201) 【作者简介】陆嘉文,硕士,研究方向:信号处理、电生理疲劳研究,E-mail: 1091798365@qq.com 【通信作者】李川涛,博士,助理研究员,研究方向:便携生理信号监测设备研制、数字信号处理,E-mail: lichuantao614@126.com
更新日期/Last Update: 2023-05-26