[1]杨东旭,赵红东,耿立新,等.双线性非局部特征结合中继监督网络用于视网膜血管分割[J].中国医学物理学杂志,2022,39(12):1516-1524.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.010]
 YANG Dongxu,ZHAO Hongdong,GENG Lixin,et al.Bilinear non-local features combined with intermediate supervision network for retinal vessel segmentation[J].Chinese Journal of Medical Physics,2022,39(12):1516-1524.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.010]
点击复制

双线性非局部特征结合中继监督网络用于视网膜血管分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第12期
页码:
1516-1524
栏目:
医学影像物理
出版日期:
2022-12-25

文章信息/Info

Title:
Bilinear non-local features combined with intermediate supervision network for retinal vessel segmentation
文章编号:
1005-202X(2022)12-1516-09
作者:
杨东旭1赵红东1耿立新1于快快2
1.河北工业大学电子信息工程学院, 天津 300401; 2.光电信息控制和安全技术重点实验室, 天津 300308
Author(s):
YANG Dongxu1 ZHAO Hongdong1 GENG Lixin1 YU Kuaikuai2
1. School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China 2. Key Laboratory of Photoelectric Information Control and Safety Technology, Tianjin 300308, China
关键词:
糖尿病视网膜病变图像处理视网膜血管分割双线性非局部模块多尺度输入中继监督
Keywords:
Keywords: diabetic retinopathy image processing retinal vessel segmentation bilinear non-local module multi-scale input intermediate supervision
分类号:
R318;TP391.41
DOI:
DOI:10.3969/j.issn.1005-202X.2022.12.010
文献标志码:
A
摘要:
对眼底图像中的视网膜血管精准分割是检测多种疾病的关键技术,在相关疾病自动筛查系统中发挥着重要的作用。针对现存方法追求分割精度时忽略对算法复杂性的考虑,导致在资源受限的医疗设备上部署困难的问题。本文通过进一步合理减少卷积层的特征通道数量来轻量化分割网络并提出了BNIS-Net。该网络采用多尺度图像作为输入融合到编码过程中,使得不同感受野之间建立良好的联系,并提出一种双线性非局部模块来增强相关上下文信息的捕捉能力。最后,在解码过程中采用中继监督的策略,为解码部分各级输出提供监督来约束网络的学习,这样可以有效改善收敛行为使浅层部分得到充分训练。BNIS-Net以0.41 M的参数量在DRIVE、STARE和CHASE_DB1 3个公开数据集上分别取得了81.02%、81.07%、78.15%的DSC值和0.983 3、0.986 1、0.985 9的AUC值。通过大量对比实验和消融研究证明,该方法能够更好地分割血管的边缘细节。
Abstract:
Abstract: The accurate segmentation of retinal vessels in fundus images is of significance for the detection of various diseases and plays an important role in automated screening system for associated diseases. To address the problem that existing methods neglect to consider the complexity of the algorithm when pursuing segmentation accuracy, which leads to difficulties in deployment on resource-constrained medical devices, the number of feature channels in the convolutional layer is further reduced to lighten the segmentation network, and a bilinear non-local intermediate supervision network (BNIS-Net) is proposed. In BNIS-Net, the multi-scale images are taken as input and fused into the coding for establishing good connections between different receptive fields, and a bilinear non-local module is added to enhance the capture of relevant contextual information. During the decoding, an intermediate supervision strategy is adopted to constrain the learning of the network by providing supervision to the output of the decoding at all levels, which can effectively improve the BNIS-Net uses a parameter of 0.41 M on 3 public data sets of DRIVE, START and CHASE, and achieves DSC values of 81.02%, 81.07% and 78.15%, and AUC values of 0.983 3, 0.986 1 and 0.985 9, respectively. It was demonstrated by numerous comparative experiments and ablation studies that the method can better segment the edge details of vessels.

相似文献/References:

[1]田 龙,李明辉,胡逸民,等.利用EPID图像金球位置自动跟踪算法研究[J].中国医学物理学杂志,2014,31(04):5038.[doi:10.3969/j.issn.1005-202X.2014.04.014]
[2]刘玉红,王志芳,杨佳仪,等.彩色图像二值化算法及应用[J].中国医学物理学杂志,2013,30(01):3873.[doi:10.3969/j.issn.1005-202X.2013.01.009]
[3]杜永兴,桑路路,秦岭,等.一种基于图像匹配的微波热疗方法[J].中国医学物理学杂志,2016,33(10):1026.[doi:10.3969/j.issn.1005-202X.2016.10.011]
 [J].Chinese Journal of Medical Physics,2016,33(12):1026.[doi:10.3969/j.issn.1005-202X.2016.10.011]
[4]朱翔宇,葛中芹,张冰清,等.基于图像处理的医学影像处理平台系统设计[J].中国医学物理学杂志,2017,34(4):388.[doi:DOI:10.3969/j.issn.1005-202X.2017.04.014]
[5]金京,孟雅丹,徐琦,等.二维分形维数在皮肤癌光学相干断层成像技术诊断中的应用[J].中国医学物理学杂志,2017,34(7):698.[doi:10.3969/j.issn.1005-202X.2017.07.010]
 [J].Chinese Journal of Medical Physics,2017,34(12):698.[doi:10.3969/j.issn.1005-202X.2017.07.010]
[6]王耿媛,赖官铨,段铮昱,等. 基于裂隙灯的眼微血管形态学参数分析在眼科疾病诊断的应用[J].中国医学物理学杂志,2018,35(3):323.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.014]
 WANG Gengyuan,LAI Guanquan,DUAN Zhengyu,et al. Application of morphological parameters analysis of ophthalmic microvasculature based on slit lamp in the diagnosis of ophthalmic diseases[J].Chinese Journal of Medical Physics,2018,35(12):323.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.014]
[7]王力,孟庆民,郭永新,等. 基于Hessian矩阵的DSA图像冠状动脉直径的测量[J].中国医学物理学杂志,2019,36(10):1182.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.013]
 WANG Li,MENG Qingmin,GUO Yongxin,et al. Measurement of coronary artery diameter on DSA image based on Hessian matrix[J].Chinese Journal of Medical Physics,2019,36(12):1182.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.013]
[8]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(12):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[9]惠钊,黄慧明.基于比率距离的自适应超声图像去噪方法[J].中国医学物理学杂志,2020,37(2):174.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.008]
 HUI Zhao,HUANG Huiming.Adaptive ultrasound image denoising method based on ratio distance[J].Chinese Journal of Medical Physics,2020,37(12):174.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.008]
[10]蒋杰伟,雷舒陶,耿苗苗,等.融合可解释性特征的糖尿病视网膜病变自动诊断[J].中国医学物理学杂志,2022,39(5):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]
 JIANG Jiewei,LEI Shutao,GENG Miaomiao,et al.Automatic diagnosis of diabetic retinopathy based on interpretable features fusion[J].Chinese Journal of Medical Physics,2022,39(12):640.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.020]

备注/Memo

备注/Memo:
【收稿日期】2022-06-28 【基金项目】天津市科技计划(21YDTPJC00050);光电信息控制和安全技术重点实验室基金(2021JCJQLB055008) 【作者简介】杨东旭,博士,研究方向:医疗人工智能、医学图像处理,E-mail: tonshy@163.com 【通信作者】赵红东,E-mail: zhaohd@hebut.edu.cn
更新日期/Last Update: 2022-12-23