[1]牛胜文,李坤华.深度学习在颅内出血CT中的研究进展[J].中国医学物理学杂志,2023,40(6):775-779.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.017]
 NIU Shengwen,LI Kunhua.Applications of deep learning in CT for intracranial hemorrhage[J].Chinese Journal of Medical Physics,2023,40(6):775-779.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.017]
点击复制

深度学习在颅内出血CT中的研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第6期
页码:
775-779
栏目:
医学人工智能
出版日期:
2023-06-27

文章信息/Info

Title:
Applications of deep learning in CT for intracranial hemorrhage
文章编号:
1005-202X(2023)06-0775-05
作者:
牛胜文李坤华
重庆医科大学附属第二医院放射科, 重庆 400010
Author(s):
NIU Shengwen LI Kunhua
Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
关键词:
颅内出血深度学习非对比增强CT综述
Keywords:
Keywords: intracranial hemorrhage deep learning non-contrast enhanced CT review
分类号:
R318;R743
DOI:
DOI:10.3969/j.issn.1005-202X.2023.06.017
文献标志码:
A
摘要:
颅内出血起病迅速,死亡率及致残率高,非对比增强CT是疑似颅内出血患者的首选检查方式。深度学习高效、精准,已广泛应用于颅内出血的影像学研究中,但也存在一些问题,本研究整理了近年来深度学习在颅内出血CT领域中的研究进展,就深度学习引入颅内出血影像学领域后所取得的成果与存在的不足展开综述,以期实现深度学习辅助颅内出血精准诊断的进一步突破。
Abstract:
Abstract: Intracranial hemorrhage has a high mortality and disability rate, as well as a quick onset. For patients with suspected intracranial hemorrhage, non-contrast enhanced CT is the preferred imaging technique. Deep learning has been widely used in the CT of intracranial hemorrhage because of its benefits of high efficiency and accuracy, but there are some drawbacks as well. Herein the use of deep learning in CT for intracranial hemorrhage in recent years is summarized, with an emphasis on the successes and shortcomings of deep learning after it is applied to intracranial hemorrhage imaging in the hopes of making further advancements in accurate diagnosis of intracranial hemorrhage with deep learning assistance.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(6):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(6):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(6):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(6):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(6):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(6):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(6):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(6):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(6):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2023-01-10 【作者简介】牛胜文,初级技师,研究方向:神经影像学,E-mail: 2273360958@qq.com 【通信作者】李坤华,硕士,主治医师,研究方向:神经影像学,E-mail: likunhua@hospital.cqmu.edu.cn
更新日期/Last Update: 2023-06-28