[1]陈明武,郑诗豪,杨波,等.CTP灌注参数联合脑电图对aSAH继发癫痫及预后的价值分析[J].中国医学物理学杂志,2023,40(2):182-185.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.009]
 CHEN Mingwu,ZHENG Shihao,YANG Bo,et al.Predictive value of CTP parameters combined with electroencephalogram for epilepsy secondary to aSAH and the prognosis[J].Chinese Journal of Medical Physics,2023,40(2):182-185.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.009]
点击复制

CTP灌注参数联合脑电图对aSAH继发癫痫及预后的价值分析()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第2期
页码:
182-185
栏目:
医学影像物理
出版日期:
2023-03-03

文章信息/Info

Title:
Predictive value of CTP parameters combined with electroencephalogram for epilepsy secondary to aSAH and the prognosis
文章编号:
1005-202X(2023)02-0182-04
作者:
陈明武郑诗豪杨波王开宇
陈明武,郑诗豪,杨波,王开宇
Author(s):
CHEN Mingwu ZHENG Shihao YANG Bo WANG Kaiyu
Department of Neurosurgery, Fujian Provincial Hospital, Fuzhou 350001, China
关键词:
脑CT灌注成像脑电图动脉瘤性蛛网膜下腔出血癫痫预后预测价值
Keywords:
cerebral CT perfusion imaging electroencephalogram aneurysmal subarachnoid hemorrhage epilepsy prognosis predictive value
分类号:
R742.1;R814
DOI:
DOI:10.3969/j.issn.1005-202X.2023.02.009
文献标志码:
A
摘要:
目的:分析脑CT灌注成像(CTP)参数联合脑电图对动脉瘤性蛛网膜下腔出血(aSAH)继发癫痫及其预后的预测价值。方法:选取aSAH患者78例,其中CTP联合脑电图检查40例(联合组),单独CTP检查38例(对照组),比较两组动态EEG Young分级、脑血管痉挛与痫样发作检出情况,比较发生与未发生脑血管痉挛者的CTP参数、痫样发作与未发作者CTP参数、预后,分析单独CTP、CTP联合脑电图对预后的预测价值。结果:联合组EEG Young分级Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ型分别3、5、19、11、2例;联合组脑血管痉挛、痫样发作检出率高于对照组(P<0.05);两组中发生脑血管痉挛者脑血流量、脑血容量均较未发生脑血管痉挛者低,而达峰时间、平均通过时间延长(P<0.05);联合组中痫样发作者的脑电图类型构成与未发作者存在差异(P<0.05),痫样发作者以Ⅲ、Ⅳ型为主,非发作者以Ⅱ型为主;痫样发作者改良Rankin评分高于非发作者(P<0.05),联合组评估预后的准确率高于对照组,而错误率低于对照组(P<0.05)。结论:与单纯CTP相比,CTP联合脑电图对aSAH患者继发癫痫及预后的预测价值更高,可在临床推广应用。
Abstract:
Objective To analyze the value of cerebral CT perfusion imaging (CTP) parameters combined with electroencephalogram (EEG) to predict epilepsy secondary to aneurysmal subarachnoid hemorrhage (aSAH) and the prognosis. Methods A total of 78 patients with aSAH were enrolled in the study, including 40 patients receiving CTP combined with EEG examination (combined group), and 38 receiving CTP alone (control group). The dynamic EEG Young type and the detection rates for cerebral vasospasm and epileptiform seizures were compared between two groups. The CTP parameters were compared between patients with and without cerebral vasospasm, and the EEG Young type composition and prognosis were compared patients with and without epileptiform seizures. The predictive value of CTP alone and CTP combined with EEG for the prognosis was analyzed. Results There were 3, 5, 19, 11, and 2 cases of EEG Young types I, II, III, IV, and V in the combined group. The detection rates for cerebral vasospasm and epileptiform seizures in the combined group were higher than those in control group (P<0.05). Compared with patients without cerebral vasospasm, those with cerebral vasospasm had smaller cerebral blood flow and cerebral blood volume, longer time to peak and mean transit time (P<0.05). In the combined group, the composition of EEG types between patients with and without epileptiform seizures were significantly different (P<0.05). Types III and IV predominated in patients with epileptiform seizures, while type Ⅱ in those without epileptiform seizures. The modified Rankin scale scores of patients with epileptiform seizures were higher than those of patients without epileptiform seizures (P<0.05). Compared with control group, the combined group had higher accuracy rate in prognosis assessment (P<0.05). Conclusion Compared with CTP alone, CTP combined with EEG has high predictive value for epilepsy secondary to aSAH and its prognosis, worthy of clinical application.

相似文献/References:

[1]周静,吴效明.基于样本熵的睡眠呼吸暂停综合征脑电研究[J].中国医学物理学杂志,2016,33(7):722.[doi:10.3969/j.issn.1005-202X.2016.07.017]
 [J].Chinese Journal of Medical Physics,2016,33(2):722.[doi:10.3969/j.issn.1005-202X.2016.07.017]
[2]苏克阳,曾景阳,谢文钦,等. 近似熵在脑电监测麻醉深度中的应用[J].中国医学物理学杂志,2019,36(1):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
 SU Keyang,ZENG Jingyang,XIE Wenqin,et al. Application of EEG approximate entropy in monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2019,36(2):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
[3]赵彦富,随力,李月如.基于脑电图的脑疲劳检测研究进展[J].中国医学物理学杂志,2019,36(11):1312.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.013]
 ZHAO Yanfu,SUI Li,LI Yueru.Progress on brain fatigue detection based on electroencephalogram[J].Chinese Journal of Medical Physics,2019,36(2):1312.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.013]
[4]赵彦富,随力,李月如.基于脑电图的脑疲劳检测研究进展[J].中国医学物理学杂志,2019,36(11):1312.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.013]
 ZHAO Yanfu,SUI Li,LI Yueru.Progress on brain fatigue detection based on electroencephalogram[J].Chinese Journal of Medical Physics,2019,36(2):1312.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.013]
[5]刘亚,伍倚明,李承炜,等.基于ADS1299的穿戴式脑电检测装置设计[J].中国医学物理学杂志,2019,36(11):1317.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.014]
 LIU Ya,WU Yiming,LI Chengwei,et al.Design of a wearable EEG detection device based on ADS1299[J].Chinese Journal of Medical Physics,2019,36(2):1317.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.014]
[6]李嘉慧,刘建鹏,潘智林,等.精神分裂症患者认知功能损伤的神经生物学基础和电生理表现[J].中国医学物理学杂志,2020,37(1):115.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.021]
 LI Jiahui,LIU Jianpeng,et al.Neurobiological bases and electrophysiological manifestations of cognitive impairments in patients with schizophrenia[J].Chinese Journal of Medical Physics,2020,37(2):115.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.021]
[7]王耀辉,吕喆,张重阳,等.基于脑电信号样本熵的急性脑梗死患者溶栓效果评价[J].中国医学物理学杂志,2022,39(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.014]
 WANG Yaohui,L?Zhe,ZHANG Chongyang,et al.Evaluation of thrombolysis in patients with acute cerebral infarction based on EEG sample entropy[J].Chinese Journal of Medical Physics,2022,39(2):81.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.014]
[8]徐学涛,蒋晓宏,曾利明,等.脑电图联合MRI在新生儿缺氧缺血性脑病诊断及预后的应用[J].中国医学物理学杂志,2022,39(7):856.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.011]
 XU Xuetao,JIANG Xiaohong,ZENG Liming,et al.Application of electroencephalography combined with MRI in the diagnosis and prognosis of neonatal hypoxic-ischemic encephalopathy[J].Chinese Journal of Medical Physics,2022,39(2):856.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.011]
[9]王耀,逯迈.经颅磁刺激和脑电联合作用时电磁场分布的仿真研究[J].中国医学物理学杂志,2023,40(3):369.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.017]
 WANG Yao,LU Mai.Simulation study of electromagnetic field distribution when combining TMS with EEG[J].Chinese Journal of Medical Physics,2023,40(2):369.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.017]
[10]于永强,刘健,孙仁诚,等.基于多特征多关系图卷积神经网络的癫痫脑电分类[J].中国医学物理学杂志,2023,40(5):595.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.012]
 YU Yongqiang,LIU Jian,SUN Rencheng,et al.Classification of epileptic electroencephalogram signal using graph convolutional neural network with multiple features and multiple relations[J].Chinese Journal of Medical Physics,2023,40(2):595.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.012]

备注/Memo

备注/Memo:
【收稿日期】2022-09-12 【基金项目】福建省自然科学基金(2020J05269) 【作者简介】陈明武,硕士研究生,副主任医师,研究方向:神经重症及神经肿瘤,E-mail: cmsfj123456@163.com
更新日期/Last Update: 2023-03-03