[1]梁智欣,邓戈龙,魏夏平,等.长尾分布下的PET-CT肺癌图像的深度学习网络检测与定位探索[J].中国医学物理学杂志,2022,39(12):1473-1484.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.004]
 LIANG Zhixin,DENG Gelong,WEI Xiaping,et al.Deep learning network for lung cancer detection and localization in PET-CT images under long-tailed distribution[J].Chinese Journal of Medical Physics,2022,39(12):1473-1484.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.004]
点击复制

长尾分布下的PET-CT肺癌图像的深度学习网络检测与定位探索()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第12期
页码:
1473-1484
栏目:
医学影像物理
出版日期:
2022-12-25

文章信息/Info

Title:
Deep learning network for lung cancer detection and localization in PET-CT images under long-tailed distribution
文章编号:
1005-202X(2022)12-1473-12
作者:
梁智欣1邓戈龙2魏夏平3梁凤好1惠贤娟1梁怡君1李谦1黄小伟4罗荣城5
1.广州中医药大学金沙洲医院核医学科, 广东 广州 510168; 2.广东工业大学计算机学院, 广东 广州 510006; 3.广州中医药大学金沙洲医院肿瘤放射治疗中心, 广东 广州 510168; 4.东莞理工学院科学技术处, 广东 东莞 523808; 5.广州中医药大学金沙洲医院肿瘤科, 广东 广州 510168
Author(s):
LIANG Zhixin1 DENG Gelong2 WEI Xiaping3 LIANG Fenghao1 HUI Xianjuan1 LIANG Yijun1 LI Qian1 HUANG Xiaowei4 LUO Rongcheng5
1. Department of Nuclear Medicine, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510168, China 2. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China 3. Department of Radiation Oncology, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510168, China 4. Science and Technology Division, Dongguan University of Technology, Dongguan 523808, China 5. Department of Oncology, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510168, China
关键词:
肺癌PET/CT长尾分布深度学习目标检测
Keywords:
Keywords: lung cancer PET/CT long-tailed distribution deep learning target detection
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.12.004
文献标志码:
A
摘要:
目的:提出一种用于PET/CT图像在长尾分布下的肺癌检测方法,以提高PET/CT图像中的肺癌诊断效能。方法:以YOLOv5作为骨干网络(Backbone),通过将Backbone与自适应类损失函数(ACSLoss)相结合来构建一个基于自适应类损失函数的YOLO模型(ACS-YOLO),以此解决PET/CT肺癌图像真实数据集中的长尾分布问题并提高PET/CT图像中的肺癌诊断效能。结果:在Lung-PET/CT-Dx公开数据集上与现存的YOLOv5变体相比,本文提出的ACS-YOLO取得了最好的检测性能,Precision、Recall、mAP@0.5和mAP@0.5:0.95指标最好的值分别为0.960 7、0.948 9、0.970 6和0.558 3。与其他YOLOv5变体相比,ACS-YOLO的检测性能提升约1%~5%,而尾部类别检测性能提升约5%~11%。结论:提出的ACS-YOLO可有效地提高长尾分布下PET/CT图像中的肺癌检测效能,这表明本文提出的方法能够作为现实PET/CT肺癌诊断的辅助工具。
Abstract:
Abstract: Objective To propose a method for lung cancer detection in PET/CT images under long-tailed distribution for improving the efficiency of PET/CT images for lung cancer diagnosis. Methods A YOLO framework called adaptive class loss function-YOLO (ACS-YOLO) which mainly consists of a YOLOv5 as backbone network (Backbone) and an adaptive class loss function (ACSLoss) was constructed to solve the problem of long-tailed distribution in the real data set of PET/CT lung cancer images and to improve the efficiency of PET/CT images for lung cancer diagnosis. Results Among the existing YOLOv5 variants on the Lung-PET/CT-Dx public data set, the proposed ACS-YOLO achieved the best detection performances in the precision, recall, mAP@0.5 and mAP@0.5:0.95 which were 0.960 7, 0.948 9, 0.970 6 and 0.558 3, respectively. Compared with the other YOLOv5 variants, ACS-YOLO showed a 1%-5% improvement in detection performance and a 5%-11% improvement in tail category detection performance. Conclusion The proposed ACS-YOLO can effectively improve the lung cancer detection in PET/CT images under long-tailed distribution, which indicates that the proposed method can be used as an aid for lung cancer diagnosis using PET/CT images.

相似文献/References:

[1]史贵连,叶福丽.肺癌调强放疗计划的设计[J].中国医学物理学杂志,2015,32(03):361.[doi:10.3969/j.issn.1005-202X.2015.03.013]
[2]朱夫海,吴伟章,王 勇,等.肺癌螺旋断层放疗计划设计的初步研究[J].中国医学物理学杂志,2014,31(04):4979.[doi:10.3969/j.issn.1005-202X.2014.04.002]
[3]翁邓胡,王 建,尹中明,等.基于锥形束CT研究肺癌图像引导放疗的内靶区外放边界值[J].中国医学物理学杂志,2014,31(04):5012.[doi:10.3969/j.issn.1005-202X.2014.04.009]
[4]彭莹莹,张书旭,谭剑明,等.基于PCNN的PET/CT图像分割在肺癌靶区勾画中的应用[J].中国医学物理学杂志,2014,31(04):5022.[doi:10.3969/j.issn.1005-202X.2014.04.011]
[5]王 涛,王运来.基于4D-CT和Mimics软件模拟分析肺癌肿瘤的呼吸运动规律[J].中国医学物理学杂志,2014,31(05):5132.[doi:10.3969/j.issn.1005-202X.2014.05.008]
[6]周 琼,周剑良,张一戈,等.基于锥形束CT肺癌放射治疗两种体位固定技术摆位误差的研究[J].中国医学物理学杂志,2014,31(06):5258.[doi:10.3969/j.issn.1005-202X.2014.06.008]
[7]张矛,金海国,苏清秀,等.肺癌静态调强与容积旋转调强放射治疗间比较[J].中国医学物理学杂志,2013,30(05):4364.[doi:10.3969/j.issn.1005-202X.2013.05.006]
[8]罗焕丽,靳富,王颖,等.肿瘤放疗中体外误差与体内误差的关联性[J].中国医学物理学杂志,2016,33(1):10.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.003]
 [J].Chinese Journal of Medical Physics,2016,33(12):10.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.003]
[9]王琳婧,张书旭,袁克虹,等.基于图像变形配准的肺癌自适应放疗剂量学研究[J].中国医学物理学杂志,2016,33(1):16.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.004]
 [J].Chinese Journal of Medical Physics,2016,33(12):16.[doi:DOI:10.3969/j.issn.1005-202X.2016.01.004]
[10]李政良,等.4DCT下肺癌大体肿瘤的变化及相关因素分析[J].中国医学物理学杂志,2016,33(2):208.[doi:10.3969/j.issn.1005-202X.2016.02.021]

备注/Memo

备注/Memo:
【收稿日期】2022-07-24 【基金项目】国家自然科学青年基金(12004410) 【作者简介】梁智欣,主治医师,研究方向:肿瘤核医学,E-mail: paul8411@163.com
更新日期/Last Update: 2022-12-23