[1]臧宇,苏洋.一种白血细胞图像训练集扩充方法[J].中国医学物理学杂志,2023,40(3):342-349.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.013]
 ZANG Yu,SU Yang.A method for white blood cell image training set augmentation[J].Chinese Journal of Medical Physics,2023,40(3):342-349.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.013]
点击复制

一种白血细胞图像训练集扩充方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第3期
页码:
342-349
栏目:
医学影像物理
出版日期:
2023-03-29

文章信息/Info

Title:
A method for white blood cell image training set augmentation
文章编号:
1005-202X(2023)03-0342-08
作者:
臧宇1苏洋2
1.惠州市第一人民医院血液内科, 广东 惠州 516000; 2.东莞城市学院计算机与信息学院, 广东 东莞 523419
Author(s):
ZANG Yu1 SU Yang2
1. Department of Hematology, Huizhou First Hospital, Huizhou 516000, China 2. School of Computer and Information, Dongguan City College, Dongguan 523419, China
关键词:
白血细胞识别机器学习训练集扩充
Keywords:
Keywords: white blood cell identification machine learning training set augmentation
分类号:
R318;TP3
DOI:
DOI:10.3969/j.issn.1005-202X.2023.03.013
文献标志码:
A
摘要:
针对因训练集较小导致的白血细胞图像识别精度低以及传统的扩充训练集方法需要人工介入的问题,提出一种白血细胞图像训练集扩充方法,将图像旋转任意角度后,提取因旋转产生的黑色区域边缘,然后对黑色区域进行填充,并弱化边缘特征,得到扩充训练集。实验结果表明,使用本文方法扩充训练集对ResNet50、MobileNet与ShuffleNet 3种模型进行训练后,对比原始数据集,模型的识别精度分别提高220.18%、140.84%与88.99%,且不需要人工介入。
Abstract:
Abstract: Aiming at the low recognition accuracy of white blood cell images caused by the small training set and the need for manual intervention in the traditional method of training set augmentation, a novel method is proposed for the augmentation of the training set of white blood cell images. The edges of the black area caused by the image rotation by an arbitrary angle are extracted, and the training set augmentation is realized through filling the black area and weakening the edge features. The experimental results show that after using the training set augmented by the proposed method to train ResNet50, MobileNet and ShuffleNet, comparing with the original data set, the recognition accuracies of these models are improved by an average of 220.18%, 140.84%, 88.99%, and no manual intervention is required.

相似文献/References:

[1]王美娇,李莎,岳海振,等. Model Analytics辅助的智能放疗计划建模[J].中国医学物理学杂志,2017,34(9):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
 [J].Chinese Journal of Medical Physics,2017,34(3):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
[2]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(3):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[3]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(3):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
[4]刘渊,程玉玉,贺睿敏,等.基于机器学习的鼻咽癌转移淋巴结鉴别模型[J].中国医学物理学杂志,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
 LIU Yuan,CHENG Yuyu,HE Ruimin,et al.Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(3):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
[5]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(3):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[6]雷炳业,潘嘉瑜,吴逢春,等.基于机器学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
 LEI Bingye,PAN Jiayu,et al.Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J].Chinese Journal of Medical Physics,2020,37(3):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
[7]李彩,范炤.基于机器学习的阿尔兹海默症分类预测[J].中国医学物理学杂志,2020,37(3):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
 LI Cai,FAN Zhao.Classification and prediction of Alzheimer’s disease based on machine learning[J].Chinese Journal of Medical Physics,2020,37(3):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
[8]闫凤,牛振洋,费振乐,等.机器学习在肺癌VMAT计划中对危及器官剂量预测的可行性[J].中国医学物理学杂志,2020,37(7):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
 YAN Feng,NIU Zhenyang,FEI Zhenle,et al.Feasibility of machine learning in OAR dosimetric prediction in VMAT plan for lung cancer[J].Chinese Journal of Medical Physics,2020,37(3):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
[9]黄仕雄,杨松华,王亮,等.基于预测剂量引导的宫颈癌自动计划研究[J].中国医学物理学杂志,2020,37(9):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
 HUANG Shixiong,YANG Songhua,WANG Liang,et al.Automatic planning of radiotherapy for cervical carcinoma based on dose prediction[J].Chinese Journal of Medical Physics,2020,37(3):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
[10]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(3):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]

备注/Memo

备注/Memo:
【收稿日期】2022-12-10 【基金项目】广东省教育厅重点领域专项(2021ZDZX1029);东莞市社会科技发展(重点)项目(2020507151144) 【作者简介】臧宇,硕士,主治医师,主要研究方向:免疫治疗、医学图像处理,E-mail: zang18762130668@163.com 【通信作者】苏洋,硕士,主要研究方向:机器学习应用、大数据处理, E-mail: 417311012@qq.com
更新日期/Last Update: 2023-03-29