[1]秦默然,李宙童,翟月英,等.基于空洞卷积神经网络的心律失常分类算法[J].中国医学物理学杂志,2023,40(1):87-94.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.015]
 QIN Moran,LI Zhoutong,ZHAI Yueying,et al.Arrhythmia detection algorithm based on dilated convolutional neural network[J].Chinese Journal of Medical Physics,2023,40(1):87-94.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.015]
点击复制

基于空洞卷积神经网络的心律失常分类算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第1期
页码:
87-94
栏目:
医学信号处理与医学仪器
出版日期:
2023-01-07

文章信息/Info

Title:
Arrhythmia detection algorithm based on dilated convolutional neural network
文章编号:
1005-202X(2023)01-0087-08
作者:
秦默然1李宙童2翟月英3史纪广1纪洁维1常胜1王豪1何进1黄启俊1
1.武汉大学物理科学与技术学院, 湖北 武汉 430072; 2.上海交通大学医学院附属第九人民医院黄浦分院心血管内科, 上海 200011; 3.武汉晴川学院电子信息工程系, 湖北 武汉 430204
Author(s):
QIN Moran1 LI Zhoutong2 ZHAI Yueying3 SHI Jiguang1 JI Jiewei1 CHANG Sheng1 WANG Hao1 HE Jin1 HUANG Qijun1
1. School of Physics and Technology, Wuhan University, Wuhan 430072, China 2. Department of Cardiology, Huangpu Brunch of Shanghai Ninth Peoples Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China 3. Department of Electronic Information Engineering, Wuhan Qingchuan University, Wuhan 430204, China
关键词:
心律不齐神经网络心电图深度学习
Keywords:
Keywords: arrhythmia neural network electrocardiogram deep learning
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2023.01.015
文献标志码:
A
摘要:
本文提出了一种基于卷积网络的心电信号分类算法,设计了空洞卷积池化金字塔模块,通过不同尺寸的空洞卷积提取信息,再将各通道的信息聚合,在增强网络的特征提取能力的同时可以降低参数量。本文聚焦于窦性心律、房性早搏、心动过速以及心动过缓4种分类,使用的心电图数据集来自医院的实测数据,数据集包含75 000名不同检测者的心电记录。经过测试,本文提出的模型在该数据集上取得了0.89的F1值,另外在CinC2017数据集上也达到了0.87的F1值。实验结果表明该分类算法具有优秀的特征提取和分类能力,在心电信号的实时分类中具备应用前景。 【关键词】心律不齐;神经网络;心电图;深度学习
Abstract:
Abstract: An electrocardiogram (ECG) signal classification algorithm based on convolutional network is proposed. The algorithm adopts an atrous spatial pooling pyramid module to extract information through atrous convolution of different sizes, and aggregates the information of each channel for enhancing the ability of feature extraction and reducing the number of parameters. The study focuses on the categories of sinus rhythm, premature atrial contraction, tachycardia and bradycardia, and a real ECG data set from a hospital which contains ECG records of 75 000 different subjects is used for experiment. The results reveal that the proposed model reaches an F1 score of 0.89 on the real ECG data set, and also achieved an F1 score of 0.87 on the CinC2017 data set, which indicates that the classification algorithm has excellent feature extraction and classification capabilities, and has application prospects in the real-time classification of ECG signals.

相似文献/References:

[1]陈津津,赵于前,邹润民.基于超限学习机的腹部CT序列图像肝脏自动分割[J].中国医学物理学杂志,2015,32(05):611.[doi:doi:10.3969/j.issn.1005-202X.2015.05.001]
[2]吴义满.一种基于经验小波变换的心电信号室性早搏检测算法[J].中国医学物理学杂志,2018,35(9):1063.[doi:DOI:10.3969/j.issn.1005-202X.2018.09.013]
 WU Yiman.Detecting premature ventricular contractions in ECG signals with empirical wavelet transformbased algorithm[J].Chinese Journal of Medical Physics,2018,35(1):1063.[doi:DOI:10.3969/j.issn.1005-202X.2018.09.013]
[3]陈真诚,杜莹,邹春林,等. 基于K-Nearest Neighbor和神经网络的糖尿病分类研究[J].中国医学物理学杂志,2018,35(10):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]
 CHEN Zhencheng,DU Ying,ZOU Chunlin,et al. Classification of diabetes based on K-Nearest Neighbor and neural network[J].Chinese Journal of Medical Physics,2018,35(1):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]
[4]吴越,钱善华,邓大建,等.基于X光吞咽视频的舌运动轨迹仿真研究[J].中国医学物理学杂志,2020,37(9):1130.[doi:10.3969/j.issn.1005-202X.2020.09.010]
 WU Yue,QIAN Shanhua,DENG Dajian,et al.Tongue motion trajectory simulation based on the X-ray video of swallowing angiography[J].Chinese Journal of Medical Physics,2020,37(1):1130.[doi:10.3969/j.issn.1005-202X.2020.09.010]
[5]陈真诚,杨薛冰,邹春林,等.基于无创血糖的糖尿病评估[J].中国医学物理学杂志,2020,37(10):1330.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.020]
 CHEN Zhencheng,YANG Xuebing,ZOU Chunlin,et al.Diabetes evaluation based on noninvasive blood glucose[J].Chinese Journal of Medical Physics,2020,37(1):1330.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.020]
[6]陈冠峰,李秀梅,孙炳庆,等.基于多模态功能磁共振成像的原发性失眠研究[J].中国医学物理学杂志,2020,37(12):1534.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.012]
 CHEN Guanfeng,LI Xiumei,SUN Bingqing,et al.Study on primary insomnia based on multimodal functional MRI[J].Chinese Journal of Medical Physics,2020,37(1):1534.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.012]
[7]李红利,丁满,张荣华,等.基于特征融合神经网络的运动想象脑电分类算法[J].中国医学物理学杂志,2022,39(1):69.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.012]
 LI?ongli,ING Man,HANG?onghua,et al.Motor imagery EEG classification algorithm based on feature fusion neural network[J].Chinese Journal of Medical Physics,2022,39(1):69.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.012]
[8]王一飞,刘光浚,刘轩吉,等.基于神经网络的脉搏波信号血压检测算法[J].中国医学物理学杂志,2022,39(8):998.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.014]
 WANG Yifei,LIU Guangjun,LIU Xuanji,et al.Neural network-based blood pressure detection algorithms for pulse wave signals[J].Chinese Journal of Medical Physics,2022,39(1):998.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.014]
[9]陈瑶,高永彬,熊玉洁.基于Transformer与Vector Loss模块的椎骨Cobb角点定位网络[J].中国医学物理学杂志,2022,39(11):1393.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.012]
 CHEN Yao,GAO Yongbin,XIONG Yujie.Vertebral Cobb corner localization using neural network with Transformer and Vector Loss modules[J].Chinese Journal of Medical Physics,2022,39(1):1393.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.012]
[10]董芳芬,陈群,李诺兮,等.基于深度学习的儿童肺炎检测模型建立及应用[J].中国医学物理学杂志,2022,39(12):1579.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.020]
 DONG Fangfen,CHEN Qun,et al.Establishment and application of a deep learning-based model for pneumonia detection in children[J].Chinese Journal of Medical Physics,2022,39(1):1579.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.020]

备注/Memo

备注/Memo:
【收稿日期】2022-08-10 【基金项目】国家自然科学基金(81971702, 61874079, 61774113) 【作者简介】秦默然,硕士,研究方向:基于深度学习的ECG信号处理与分类,E-mail: qinmrmr@whu.edu.cn 【通信作者】黄启俊,教授,研究方向:医学信号处理及微电子系统设计,E-mail: huangqj@whu.edu.cn
更新日期/Last Update: 2023-01-07